You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ravi/src/ravi_set.c

421 lines
10 KiB

/*
* Copyright © 2009 Intel Corporation
* Copyright © 1988-2004 Keith Packard and Bart Massey.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Except as contained in this notice, the names of the authors
* or their institutions shall not be used in advertising or
* otherwise to promote the sale, use or other dealings in this
* Software without prior written authorization from the
* authors.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Keith Packard <keithp@keithp.com>
*/
#include <assert.h>
#include <stdlib.h>
#include <ravi_set.h>
#define ARRAY_SIZE(array) (sizeof(array) / sizeof(array[0]))
/*
* From Knuth -- a good choice for hash/rehash values is p, p-2 where
* p and p-2 are both prime. These tables are sized to have an extra 10%
* free to avoid exponential performance degradation as the hash table fills
*/
static const uint32_t deleted_key_value;
static const void *deleted_key = &deleted_key_value;
static const struct {
uint32_t max_entries, size, rehash;
} hash_sizes[] = {
{ 2, 5, 3 },
{ 4, 7, 5 },
{ 8, 13, 11 },
{ 16, 19, 17 },
{ 32, 43, 41 },
{ 64, 73, 71 },
{ 128, 151, 149 },
{ 256, 283, 281 },
{ 512, 571, 569 },
{ 1024, 1153, 1151 },
{ 2048, 2269, 2267 },
{ 4096, 4519, 4517 },
{ 8192, 9013, 9011 },
{ 16384, 18043, 18041 },
{ 32768, 36109, 36107 },
{ 65536, 72091, 72089 },
{ 131072, 144409, 144407 },
{ 262144, 288361, 288359 },
{ 524288, 576883, 576881 },
{ 1048576, 1153459, 1153457 },
{ 2097152, 2307163, 2307161 },
{ 4194304, 4613893, 4613891 },
{ 8388608, 9227641, 9227639 },
{ 16777216, 18455029, 18455027 },
{ 33554432, 36911011, 36911009 },
{ 67108864, 73819861, 73819859 },
{ 134217728, 147639589, 147639587 },
{ 268435456, 295279081, 295279079 },
{ 536870912, 590559793, 590559791 },
{ 1073741824, 1181116273, 1181116271},
{ 2147483648ul, 2362232233ul, 2362232231ul}
};
static int
entry_is_free(const struct set_entry *entry)
{
return entry->key == NULL;
}
static int
entry_is_deleted(const struct set_entry *entry)
{
return entry->key == deleted_key;
}
static int
entry_is_present(const struct set_entry *entry)
{
return entry->key != NULL && entry->key != deleted_key;
}
struct set *
set_create(uint32_t (*hash_function)(const void *key),
int (*key_equals_function)(const void *a,
const void *b))
{
struct set *set;
set = malloc(sizeof(*set));
if (set == NULL)
return NULL;
set->size_index = 0;
set->size = hash_sizes[set->size_index].size;
set->rehash = hash_sizes[set->size_index].rehash;
set->max_entries = hash_sizes[set->size_index].max_entries;
set->hash_function = hash_function;
set->key_equals_function = key_equals_function;
set->table = calloc(set->size, sizeof(*set->table));
set->entries = 0;
set->deleted_entries = 0;
if (set->table == NULL) {
free(set);
return NULL;
}
return set;
}
/**
* Frees the given set.
*
* If delete_function is passed, it gets called on each entry present before
* freeing.
*/
void
set_destroy(struct set *set, void (*delete_function)(struct set_entry *entry))
{
if (!set)
return;
if (delete_function) {
struct set_entry *entry;
set_foreach(set, entry) {
delete_function(entry);
}
}
free(set->table);
free(set);
}
/* Does the set contain an entry with the given key.
*/
bool
set_contains(struct set *set, const void *key)
{
struct set_entry *entry;
entry = set_search(set, key);
return entry != NULL;
}
/**
* Finds a set entry with the given key.
*
* Returns NULL if no entry is found.
*/
struct set_entry *
set_search(struct set *set, const void *key)
{
uint32_t hash = set->hash_function(key);
return set_search_pre_hashed (set, hash, key);
}
/**
* Finds a set entry with the given key and hash of that key.
*
* Returns NULL if no entry is found.
*/
struct set_entry *
set_search_pre_hashed(struct set *set, uint32_t hash, const void *key)
{
uint32_t hash_address;
hash_address = hash % set->size;
do {
uint32_t double_hash;
struct set_entry *entry = set->table + hash_address;
if (entry_is_free(entry)) {
return NULL;
} else if (entry_is_present(entry) && entry->hash == hash) {
if (set->key_equals_function(key, entry->key)) {
return entry;
}
}
double_hash = 1 + hash % set->rehash;
hash_address = (hash_address + double_hash) % set->size;
} while (hash_address != hash % set->size);
return NULL;
}
static void
set_rehash(struct set *set, int new_size_index)
{
struct set old_set;
struct set_entry *table, *entry;
if (new_size_index >= ARRAY_SIZE(hash_sizes))
return;
table = calloc(hash_sizes[new_size_index].size, sizeof(*set->table));
if (table == NULL)
return;
old_set = *set;
set->table = table;
set->size_index = new_size_index;
set->size = hash_sizes[set->size_index].size;
set->rehash = hash_sizes[set->size_index].rehash;
set->max_entries = hash_sizes[set->size_index].max_entries;
set->entries = 0;
set->deleted_entries = 0;
set_foreach(&old_set, entry) {
set_add_pre_hashed(set, entry->hash, entry->key);
}
free(old_set.table);
}
/**
* Inserts the key into the set.
*
* Note that insertion may rearrange the set on a resize or rehash, so
* previously found set_entry pointers are no longer valid after this
* function.
*/
struct set_entry *
set_add(struct set *set, const void *key)
{
uint32_t hash = set->hash_function(key);
/* Make sure nobody tries to add one of the magic values as a
* key. If you need to do so, either do so in a wrapper, or
* store keys with the magic values separately in the struct
* set.
*/
assert(key != NULL);
return set_add_pre_hashed(set, hash, key);
}
/**
* Inserts the key with the given hash into the set.
*
* Note that insertion may rearrange the set on a resize or rehash, so
* previously found set_entry pointers are no longer valid after this
* function.
*/
struct set_entry *
set_add_pre_hashed(struct set *set, uint32_t hash, const void *key)
{
uint32_t hash_address;
struct set_entry *available_entry = NULL;
if (set->entries >= set->max_entries) {
set_rehash(set, set->size_index + 1);
} else if (set->deleted_entries + set->entries >= set->max_entries) {
set_rehash(set, set->size_index);
}
hash_address = hash % set->size;
do {
struct set_entry *entry = set->table + hash_address;
uint32_t double_hash;
if (!entry_is_present(entry)) {
/* Stash the first available entry we find */
if (available_entry == NULL)
available_entry = entry;
if (entry_is_free(entry))
break;
}
/* Implement replacement when another insert happens
* with a matching key. This is a relatively common
* feature of hash tables, with the alternative
* generally being "insert the new value as well, and
* return it first when the key is searched for".
*
* Note that the set doesn't have a delete callback.
* If freeing of old keys is required to avoid memory leaks,
* perform a search before inserting.
*/
if (!entry_is_deleted(entry) &&
entry->hash == hash &&
set->key_equals_function(key, entry->key)) {
entry->key = key;
return entry;
}
double_hash = 1 + hash % set->rehash;
hash_address = (hash_address + double_hash) % set->size;
} while (hash_address != hash % set->size);
if (available_entry) {
if (entry_is_deleted(available_entry))
set->deleted_entries--;
available_entry->hash = hash;
available_entry->key = key;
set->entries++;
return available_entry;
}
/* We could hit here if a required resize failed. An unchecked-malloc
* application could ignore this result.
*/
return NULL;
}
/**
* This function searches for, and removes an entry from the set.
*
* If the caller has previously found a struct set_entry pointer,
* (from calling set_search or remembering it from set_add), then
* set_remove_entry can be called instead to avoid an extra search.
*/
void
set_remove(struct set *set, const void *key)
{
struct set_entry *entry;
entry = set_search(set, key);
set_remove_entry(set, entry);
}
/**
* This function deletes the set given set entry.
*
* Note that deletion doesn't otherwise modify the set, so an
* iteration over the set deleting entries is safe.
*/
void
set_remove_entry(struct set *set, struct set_entry *entry)
{
if (!entry)
return;
entry->key = deleted_key;
set->entries--;
set->deleted_entries++;
}
/**
* This function is an iterator over the set.
*
* Pass in NULL for the first entry, as in the start of a for loop.
* Note that an iteration over the set is O(table_size) not
* O(entries).
*/
struct set_entry *
set_next_entry(struct set *set, struct set_entry *entry)
{
if (entry == NULL)
entry = set->table;
else
entry = entry + 1;
for (; entry != set->table + set->size; entry++) {
if (entry_is_present(entry)) {
return entry;
}
}
return NULL;
}
#ifndef _WIN32
struct set_entry *
set_random_entry(struct set *set,
int (*predicate)(struct set_entry *entry))
{
struct set_entry *entry;
uint32_t i = random() % set->size;
if (set->entries == 0)
return NULL;
for (entry = set->table + i; entry != set->table + set->size; entry++) {
if (entry_is_present(entry) &&
(!predicate || predicate(entry))) {
return entry;
}
}
for (entry = set->table; entry != set->table + i; entry++) {
if (entry_is_present(entry) &&
(!predicate || predicate(entry))) {
return entry;
}
}
return NULL;
}
#endif