You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ravi/dmr_c/src/linearize.c

2741 lines
74 KiB

/*
* Linearize - walk the parse tree and generate a linear version
* of it and the basic blocks.
*
* Copyright (C) 2004 Linus Torvalds
* Copyright (C) 2004 Christopher Li
*/
#include <string.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <port.h>
#include <parse.h>
#include <expression.h>
#include <linearize.h>
#if 0
#include <flow.h>
#endif
#include <target.h>
static pseudo_t linearize_statement(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt);
static pseudo_t linearize_expression(struct dmr_C *C, struct entrypoint *ep, struct expression *expr);
static pseudo_t add_binary_op(struct dmr_C *C, struct entrypoint *ep, struct symbol *ctype, int op, pseudo_t left, pseudo_t right);
static pseudo_t add_setval(struct dmr_C *C, struct entrypoint *ep, struct symbol *ctype, struct expression *val);
static pseudo_t linearize_one_symbol(struct dmr_C *C, struct entrypoint *ep, struct symbol *sym);
struct access_data;
static pseudo_t add_load(struct dmr_C *C, struct entrypoint *ep, struct access_data *);
static pseudo_t linearize_initializer(struct dmr_C *C, struct entrypoint *ep, struct expression *initializer, struct access_data *);
static pseudo_t cast_pseudo(struct dmr_C *C, struct entrypoint *ep, pseudo_t src, struct symbol *from, struct symbol *to);
static struct instruction *alloc_instruction(struct dmr_C *C, int opcode, int size)
{
struct instruction * insn = (struct instruction *) dmrC_allocator_allocate(&C->L->instruction_allocator, 0);
insn->opcode = opcode;
insn->size = size;
insn->pos = C->L->current_pos;
return insn;
}
static inline int type_size(struct symbol *type)
{
return type ? type->bit_size > 0 ? type->bit_size : 0 : 0;
}
static struct instruction *alloc_typed_instruction(struct dmr_C *C, int opcode, struct symbol *type)
{
struct instruction *insn = alloc_instruction(C, opcode, type_size(type));
insn->type = type;
return insn;
}
static struct entrypoint *alloc_entrypoint(struct dmr_C *C)
{
return (struct entrypoint *) dmrC_allocator_allocate(&C->L->entrypoint_allocator, 0);
}
static struct basic_block *alloc_basic_block(struct dmr_C *C, struct entrypoint *ep, struct position pos)
{
struct basic_block *bb = (struct basic_block *) dmrC_allocator_allocate(&C->L->basic_block_allocator, 0);
bb->context = -1;
bb->pos = pos;
bb->ep = ep;
bb->nr = C->L->bb_nr++;
return bb;
}
static struct multijmp *alloc_multijmp(struct dmr_C *C, struct basic_block *target, long long begin, long long end)
{
struct multijmp *multijmp = (struct multijmp *)dmrC_allocator_allocate(&C->L->multijmp_allocator, 0);
multijmp->target = target;
multijmp->begin = begin;
multijmp->end = end;
return multijmp;
}
#if 0
static inline int regno(pseudo_t n)
{
int retval = -1;
if (n && n->type == PSEUDO_REG)
retval = n->nr;
return retval;
}
#endif
const char *dmrC_show_pseudo(struct dmr_C *C, pseudo_t pseudo)
{
char *buf;
int i;
if (!pseudo)
return "no pseudo";
if (pseudo == VOID_PSEUDO(C))
return "VOID";
buf = C->L->pseudo_buffer[3 & ++C->L->n];
switch(pseudo->type) {
case PSEUDO_SYM: {
struct symbol *sym = pseudo->sym;
struct expression *expr;
if (sym->bb_target) {
snprintf(buf, 64, ".L%u", sym->bb_target->nr);
break;
}
if (sym->ident) {
snprintf(buf, 64, "%s", dmrC_show_ident(C, sym->ident));
break;
}
expr = sym->initializer;
snprintf(buf, 64, "<anon symbol:%p>", sym);
if (expr) {
switch (expr->type) {
case EXPR_VALUE:
snprintf(buf, 64, "<symbol value: %lld>", expr->value);
break;
case EXPR_STRING:
return dmrC_show_string(C, expr->string);
default:
break;
}
}
break;
}
case PSEUDO_REG:
i = snprintf(buf, 64, "%%r%d", pseudo->nr);
if (pseudo->ident)
sprintf(buf+i, "(%s)", dmrC_show_ident(C, pseudo->ident));
break;
case PSEUDO_VAL: {
long long value = pseudo->value;
if (value > 1000 || value < -1000)
snprintf(buf, 64, "$%#llx", value);
else
snprintf(buf, 64, "$%lld", value);
break;
}
case PSEUDO_ARG:
snprintf(buf, 64, "%%arg%d", pseudo->nr);
break;
case PSEUDO_PHI:
i = snprintf(buf, 64, "%%phi%d", pseudo->nr);
if (pseudo->ident)
sprintf(buf+i, "(%s)", dmrC_show_ident(C, pseudo->ident));
break;
default:
snprintf(buf, 64, "<bad pseudo type %d>", pseudo->type);
}
return buf;
}
static const char *opcodes[] = {
[OP_BADOP] = "bad_op",
/* Fn entrypoint */
[OP_ENTRY] = "<entry-point>",
/* Terminator */
[OP_RET] = "ret",
[OP_BR] = "br",
[OP_CBR] = "cbr",
[OP_SWITCH] = "switch",
[OP_INVOKE] = "invoke",
[OP_COMPUTEDGOTO] = "jmp *",
[OP_UNWIND] = "unwind",
/* Binary */
[OP_ADD] = "add",
[OP_SUB] = "sub",
[OP_MULU] = "mulu",
[OP_MULS] = "muls",
[OP_DIVU] = "divu",
[OP_DIVS] = "divs",
[OP_MODU] = "modu",
[OP_MODS] = "mods",
[OP_SHL] = "shl",
[OP_LSR] = "lsr",
[OP_ASR] = "asr",
/* Logical */
[OP_AND] = "and",
[OP_OR] = "or",
[OP_XOR] = "xor",
[OP_AND_BOOL] = "and-bool",
[OP_OR_BOOL] = "or-bool",
/* Binary comparison */
[OP_SET_EQ] = "seteq",
[OP_SET_NE] = "setne",
[OP_SET_LE] = "setle",
[OP_SET_GE] = "setge",
[OP_SET_LT] = "setlt",
[OP_SET_GT] = "setgt",
[OP_SET_B] = "setb",
[OP_SET_A] = "seta",
[OP_SET_BE] = "setbe",
[OP_SET_AE] = "setae",
/* Uni */
[OP_NOT] = "not",
[OP_NEG] = "neg",
/* Special three-input */
[OP_SEL] = "select",
/* Memory */
[OP_MALLOC] = "malloc",
[OP_FREE] = "free",
[OP_ALLOCA] = "alloca",
[OP_LOAD] = "load",
[OP_STORE] = "store",
[OP_SETVAL] = "set",
[OP_SYMADDR] = "symaddr",
[OP_GET_ELEMENT_PTR] = "getelem",
/* Other */
[OP_PHI] = "phi",
[OP_PHISOURCE] = "phisrc",
[OP_CAST] = "cast",
[OP_SCAST] = "scast",
[OP_FPCAST] = "fpcast",
[OP_PTRCAST] = "ptrcast",
[OP_INLINED_CALL] = "# call",
[OP_CALL] = "call",
[OP_VANEXT] = "va_next",
[OP_VAARG] = "va_arg",
[OP_SLICE] = "slice",
[OP_SNOP] = "snop",
[OP_LNOP] = "lnop",
[OP_NOP] = "nop",
[OP_DEATHNOTE] = "dead",
[OP_ASM] = "asm",
/* Sparse tagging (line numbers, context, whatever) */
[OP_CONTEXT] = "context",
[OP_RANGE] = "range-check",
[OP_COPY] = "copy",
};
static char *show_asm_constraints(struct dmr_C *C, char *buf, const char *sep, struct asm_constraint_list *list)
{
struct asm_constraint *entry;
FOR_EACH_PTR(list, entry) {
buf += sprintf(buf, "%s\"%s\"", sep, entry->constraint);
if (entry->pseudo)
buf += sprintf(buf, " (%s)", dmrC_show_pseudo(C, entry->pseudo));
if (entry->ident)
buf += sprintf(buf, " [%s]", dmrC_show_ident(C, entry->ident));
sep = ", ";
} END_FOR_EACH_PTR(entry);
return buf;
}
static char *show_asm(struct dmr_C *C, char *buf, struct instruction *insn)
{
struct asm_rules *rules = insn->asm_rules;
buf += sprintf(buf, "\"%s\"", insn->string);
buf = show_asm_constraints(C, buf, "\n\t\tout: ", rules->outputs);
buf = show_asm_constraints(C, buf, "\n\t\tin: ", rules->inputs);
buf = show_asm_constraints(C, buf, "\n\t\tclobber: ", rules->clobbers);
return buf;
}
const char *dmrC_show_instruction(struct dmr_C *C, struct instruction *insn)
{
int opcode = insn->opcode;
char *buf;
buf = C->L->buffer;
if (!insn->bb)
buf += sprintf(buf, "# ");
if (opcode < (int)ARRAY_SIZE(opcodes)) {
const char *op = opcodes[opcode];
if (!op)
buf += sprintf(buf, "opcode:%d", opcode);
else
buf += sprintf(buf, "%s", op);
if (insn->type && dmrC_is_float_type(C->S, insn->type))
buf += sprintf(buf, ".f%d", insn->size);
else if (insn->size)
buf += sprintf(buf, ".%d", insn->size);
if (insn->type) {
if (dmrC_is_ptr_type(insn->type))
buf += sprintf(buf, "*");
}
memset(buf, ' ', 20);
buf++;
}
if (buf < C->L->buffer + 12)
buf = C->L->buffer + 12;
switch (opcode) {
case OP_RET:
if (insn->src && insn->src != VOID_PSEUDO(C))
buf += sprintf(buf, "%s", dmrC_show_pseudo(C, insn->src));
break;
case OP_CBR:
buf += sprintf(buf, "%s, .L%u, .L%u", dmrC_show_pseudo(C, insn->cond), insn->bb_true->nr, insn->bb_false->nr);
break;
case OP_BR:
buf += sprintf(buf, ".L%u", insn->bb_true->nr);
break;
case OP_SYMADDR: {
struct symbol *sym = insn->symbol->sym;
buf += sprintf(buf, "%s <- ", dmrC_show_pseudo(C, insn->target));
if (!insn->bb && !sym)
break;
if (sym->bb_target) {
buf += sprintf(buf, ".L%u", sym->bb_target->nr);
break;
}
if (sym->ident) {
buf += sprintf(buf, "%s", dmrC_show_ident(C, sym->ident));
break;
}
buf += sprintf(buf, "<anon symbol:%p>", sym);
break;
}
case OP_SETVAL: {
struct expression *expr = insn->val;
struct symbol *sym;
buf += sprintf(buf, "%s <- ", dmrC_show_pseudo(C, insn->target));
if (!expr) {
buf += sprintf(buf, "%s", "<none>");
break;
}
switch (expr->type) {
case EXPR_VALUE:
buf += sprintf(buf, "%lld", expr->value);
break;
case EXPR_FVALUE:
buf += sprintf(buf, "%Lf", expr->fvalue);
break;
case EXPR_STRING:
buf += sprintf(buf, "%.40s", dmrC_show_string(C, expr->string));
break;
case EXPR_SYMBOL:
buf += sprintf(buf, "%s", dmrC_show_ident(C, expr->symbol->ident));
break;
case EXPR_LABEL:
sym = expr->symbol;
if (sym->bb_target)
buf += sprintf(buf, ".L%u", sym->bb_target->nr);
break;
default:
buf += sprintf(buf, "SETVAL EXPR TYPE %d", expr->type);
}
break;
}
case OP_SWITCH: {
struct multijmp *jmp;
buf += sprintf(buf, "%s", dmrC_show_pseudo(C, insn->cond));
FOR_EACH_PTR(insn->multijmp_list, jmp) {
if (jmp->begin == jmp->end)
buf += sprintf(buf, ", %lld -> .L%u", jmp->begin, jmp->target->nr);
else if (jmp->begin < jmp->end)
buf += sprintf(buf, ", %lld ... %lld -> .L%u", jmp->begin, jmp->end, jmp->target->nr);
else
buf += sprintf(buf, ", default -> .L%u", jmp->target->nr);
} END_FOR_EACH_PTR(jmp);
break;
}
case OP_COMPUTEDGOTO: {
struct multijmp *jmp;
buf += sprintf(buf, "%s", dmrC_show_pseudo(C, insn->target));
FOR_EACH_PTR(insn->multijmp_list, jmp) {
buf += sprintf(buf, ", .L%u", jmp->target->nr);
} END_FOR_EACH_PTR(jmp);
break;
}
case OP_PHISOURCE: {
struct instruction *phi;
buf += sprintf(buf, "%s <- %s ", dmrC_show_pseudo(C, insn->target), dmrC_show_pseudo(C, insn->phi_src));
FOR_EACH_PTR(insn->phi_users, phi) {
buf += sprintf(buf, " (%s)", dmrC_show_pseudo(C, phi->target));
} END_FOR_EACH_PTR(phi);
break;
}
case OP_PHI: {
pseudo_t phi;
const char *s = " <-";
buf += sprintf(buf, "%s", dmrC_show_pseudo(C, insn->target));
FOR_EACH_PTR(insn->phi_list, phi) {
buf += sprintf(buf, "%s %s", s, dmrC_show_pseudo(C, phi));
s = ",";
} END_FOR_EACH_PTR(phi);
break;
}
case OP_LOAD: case OP_LNOP:
buf += sprintf(buf, "%s <- %d[%s]", dmrC_show_pseudo(C, insn->target), insn->offset, dmrC_show_pseudo(C, insn->src));
if (insn->orig_type) {
struct symbol *sym = insn->orig_type;
if (sym->ident) {
buf += sprintf(buf, "; %s", dmrC_show_ident(C, sym->ident));
}
else {
buf += sprintf(buf, "; <anon symbol:%p>", sym);
}
}
break;
case OP_STORE: case OP_SNOP:
buf += sprintf(buf, "%s -> %d[%s]", dmrC_show_pseudo(C, insn->target), insn->offset, dmrC_show_pseudo(C, insn->src));
if (insn->orig_type) {
struct symbol *sym = insn->orig_type;
if (sym->ident) {
buf += sprintf(buf, "; %s", dmrC_show_ident(C, sym->ident));
}
else {
buf += sprintf(buf, "; <anon symbol:%p>", sym);
}
}
break;
case OP_INLINED_CALL:
case OP_CALL: {
if (insn->target && insn->target != VOID_PSEUDO(C))
buf += sprintf(buf, "%s <- ", dmrC_show_pseudo(C, insn->target));
buf += sprintf(buf, "%s", dmrC_show_pseudo(C, insn->func));
{
struct pseudo *arg;
FOR_EACH_PTR(insn->arguments, arg) {
buf += sprintf(buf, ", %s", dmrC_show_pseudo(C, arg));
} END_FOR_EACH_PTR(arg);
}
break;
}
case OP_CAST:
case OP_SCAST:
case OP_FPCAST:
case OP_PTRCAST:
buf += sprintf(buf, "%s <- (%d) %s",
dmrC_show_pseudo(C, insn->target),
type_size(insn->orig_type),
dmrC_show_pseudo(C, insn->src));
break;
case OP_ADD:
case OP_SUB:
case OP_MULU:
case OP_MULS:
case OP_DIVU:
case OP_DIVS:
case OP_MODU:
case OP_MODS:
case OP_SHL:
case OP_LSR:
case OP_ASR:
case OP_AND:
case OP_OR:
case OP_XOR:
case OP_AND_BOOL:
case OP_OR_BOOL:
case OP_SET_EQ:
case OP_SET_NE:
case OP_SET_LE:
case OP_SET_GE:
case OP_SET_LT:
case OP_SET_GT:
case OP_SET_B:
case OP_SET_A:
case OP_SET_BE:
case OP_SET_AE:
buf += sprintf(buf, "%s <- %s, %s", dmrC_show_pseudo(C, insn->target), dmrC_show_pseudo(C, insn->src1), dmrC_show_pseudo(C, insn->src2));
break;
case OP_SEL:
buf += sprintf(buf, "%s <- %s, %s, %s", dmrC_show_pseudo(C, insn->target),
dmrC_show_pseudo(C, insn->src1), dmrC_show_pseudo(C, insn->src2), dmrC_show_pseudo(C, insn->src3));
break;
case OP_SLICE:
buf += sprintf(buf, "%s <- %s, %d, %d", dmrC_show_pseudo(C, insn->target), dmrC_show_pseudo(C, insn->base), insn->from, insn->len);
break;
case OP_NOT: case OP_NEG:
buf += sprintf(buf, "%s <- %s", dmrC_show_pseudo(C, insn->target), dmrC_show_pseudo(C, insn->src1));
break;
case OP_CONTEXT:
buf += sprintf(buf, "%s%d", insn->check ? "check: " : "", insn->increment);
break;
case OP_RANGE:
buf += sprintf(buf, "%s between %s..%s", dmrC_show_pseudo(C, insn->src1), dmrC_show_pseudo(C, insn->src2), dmrC_show_pseudo(C, insn->src3));
break;
case OP_NOP:
buf += sprintf(buf, "%s <- %s", dmrC_show_pseudo(C, insn->target), dmrC_show_pseudo(C, insn->src1));
break;
case OP_DEATHNOTE:
buf += sprintf(buf, "%s", dmrC_show_pseudo(C, insn->target));
break;
case OP_ASM:
buf = show_asm(C, buf, insn);
break;
case OP_COPY:
buf += sprintf(buf, "%s <- %s", dmrC_show_pseudo(C, insn->target), dmrC_show_pseudo(C, insn->src));
break;
default:
break;
}
if (buf >= C->L->buffer + sizeof(C->L->buffer))
dmrC_die(C, "instruction buffer overflowed %td\n", buf - C->L->buffer);
do { --buf; } while (*buf == ' ');
*++buf = 0;
return C->L->buffer;
}
void dmrC_show_bb(struct dmr_C *C, struct basic_block *bb)
{
struct instruction *insn;
printf(".L%u:\n", bb->nr);
if (C->verbose) {
pseudo_t needs, defines;
printf("%s:%d\n", dmrC_stream_name(C, bb->pos.stream), bb->pos.line);
FOR_EACH_PTR(bb->needs, needs) {
struct instruction *def = needs->def;
if (def->opcode != OP_PHI) {
printf(" **uses %s (from .L%u)**\n", dmrC_show_pseudo(C, needs), def->bb->nr);
} else {
pseudo_t phi;
const char *sep = " ";
printf(" **uses %s (from", dmrC_show_pseudo(C, needs));
FOR_EACH_PTR(def->phi_list, phi) {
if (phi == VOID_PSEUDO(C))
continue;
printf("%s(%s:.L%u)", sep, dmrC_show_pseudo(C, phi), phi->def->bb->nr);
sep = ", ";
} END_FOR_EACH_PTR(phi);
printf(")**\n");
}
} END_FOR_EACH_PTR(needs);
FOR_EACH_PTR(bb->defines, defines) {
printf(" **defines %s **\n", dmrC_show_pseudo(C, defines));
} END_FOR_EACH_PTR(defines);
if (bb->parents) {
struct basic_block *from;
FOR_EACH_PTR(bb->parents, from) {
printf(" **from .L%u (%s:%d:%d)**\n", from->nr,
dmrC_stream_name(C, from->pos.stream), from->pos.line, from->pos.pos);
} END_FOR_EACH_PTR(from);
}
if (bb->children) {
struct basic_block *to;
FOR_EACH_PTR(bb->children, to) {
printf(" **to .L%u (%s:%d:%d)**\n", to->nr,
dmrC_stream_name(C, to->pos.stream), to->pos.line, to->pos.pos);
} END_FOR_EACH_PTR(to);
}
}
FOR_EACH_PTR(bb->insns, insn) {
if (!insn->bb && C->verbose < 2)
continue;
printf("\t%s\n", dmrC_show_instruction(C, insn));
} END_FOR_EACH_PTR(insn);
if (!dmrC_bb_terminated(bb))
printf("\tEND\n");
}
static void show_symbol_usage(struct dmr_C *C, pseudo_t pseudo)
{
struct pseudo_user *pu;
if (pseudo) {
FOR_EACH_PTR(pseudo->users, pu) {
printf("\t%s\n", dmrC_show_instruction(C, pu->insn));
} END_FOR_EACH_PTR(pu);
}
}
void dmrC_show_entry(struct dmr_C *C, struct entrypoint *ep)
{
struct symbol *sym;
struct basic_block *bb;
printf("%s:\n", dmrC_show_ident(C, ep->name->ident));
if (C->verbose) {
printf("ep %p: %s\n", ep, dmrC_show_ident(C, ep->name->ident));
FOR_EACH_PTR(ep->syms, sym) {
if (!sym->pseudo)
continue;
if (!sym->pseudo->users)
continue;
printf(" sym: %p %s\n", sym, dmrC_show_ident(C, sym->ident));
if (sym->ctype.modifiers & (MOD_EXTERN | MOD_STATIC | MOD_ADDRESSABLE))
printf("\texternal visibility\n");
show_symbol_usage(C, sym->pseudo);
} END_FOR_EACH_PTR(sym);
printf("\n");
}
FOR_EACH_PTR(ep->bbs, bb) {
if (!bb)
continue;
if (!bb->parents && !bb->children && !bb->insns && C->verbose < 2)
continue;
dmrC_show_bb(C, bb);
printf("\n");
} END_FOR_EACH_PTR(bb);
printf("\n");
}
static void bind_label(struct dmr_C *C, struct symbol *label, struct basic_block *bb, struct position pos)
{
if (label->bb_target)
dmrC_warning(C, pos, "label '%s' already bound", dmrC_show_ident(C, label->ident));
label->bb_target = bb;
}
static struct basic_block * get_bound_block(struct dmr_C *C, struct entrypoint *ep, struct symbol *label)
{
struct basic_block *bb = label->bb_target;
if (!bb) {
bb = alloc_basic_block(C, ep, label->pos);
label->bb_target = bb;
}
return bb;
}
static void finish_block(struct entrypoint *ep)
{
struct basic_block *src = ep->active;
if (dmrC_bb_reachable(src))
ep->active = NULL;
}
static void add_goto(struct dmr_C *C, struct entrypoint *ep, struct basic_block *dst)
{
struct basic_block *src = ep->active;
if (dmrC_bb_reachable(src)) {
struct instruction *br = alloc_instruction(C, OP_BR, 0);
br->bb_true = dst;
dmrC_add_bb(C, &dst->parents, src);
dmrC_add_bb(C, &src->children, dst);
br->bb = src;
dmrC_add_instruction(C, &src->insns, br);
ep->active = NULL;
}
}
static void add_one_insn(struct dmr_C *C, struct entrypoint *ep, struct instruction *insn)
{
struct basic_block *bb = ep->active;
if (dmrC_bb_reachable(bb)) {
insn->bb = bb;
dmrC_add_instruction(C, &bb->insns, insn);
}
}
static void set_activeblock(struct dmr_C *C, struct entrypoint *ep, struct basic_block *bb)
{
if (!dmrC_bb_terminated(ep->active))
add_goto(C, ep, bb);
ep->active = bb;
if (dmrC_bb_reachable(bb))
dmrC_add_bb(C, &ep->bbs, bb);
}
static void remove_parent(struct dmr_C *C, struct basic_block *child, struct basic_block *parent)
{
dmrC_remove_bb_from_list(&child->parents, parent, 1);
if (!child->parents)
C->L->repeat_phase |= REPEAT_CFG_CLEANUP;
}
/* Change a "switch" into a branch */
void dmrC_insert_branch(struct dmr_C *C, struct basic_block *bb, struct instruction *jmp, struct basic_block *target)
{
struct instruction *br, *old;
struct basic_block *child;
/* Remove the switch */
old = dmrC_delete_last_instruction(&bb->insns);
assert(old == jmp);
dmrC_kill_instruction(C, old);
br = alloc_instruction(C, OP_BR, 0);
br->bb = bb;
br->bb_true = target;
dmrC_add_instruction(C, &bb->insns, br);
FOR_EACH_PTR(bb->children, child) {
if (child == target) {
target = NULL; /* Trigger just once */
continue;
}
DELETE_CURRENT_PTR(child);
remove_parent(C, child, bb);
} END_FOR_EACH_PTR(child);
ptrlist_pack((struct ptr_list **)&bb->children);
}
void dmrC_insert_select(struct dmr_C *C, struct basic_block *bb, struct instruction *br, struct instruction *phi_node, pseudo_t if_true, pseudo_t if_false)
{
pseudo_t target;
struct instruction *select;
/* Remove the 'br' */
dmrC_delete_last_instruction(&bb->insns);
select = alloc_typed_instruction(C, OP_SEL, phi_node->type);
select->bb = bb;
assert(br->cond);
dmrC_use_pseudo(C, select, br->cond, &select->src1);
target = phi_node->target;
assert(target->def == phi_node);
select->target = target;
target->def = select;
dmrC_use_pseudo(C, select, if_true, &select->src2);
dmrC_use_pseudo(C, select, if_false, &select->src3);
dmrC_add_instruction(C, &bb->insns, select);
dmrC_add_instruction(C, &bb->insns, br);
}
static inline int bb_empty(struct basic_block *bb)
{
return !bb->insns;
}
/* Add a label to the currently active block, return new active block */
static struct basic_block * add_label(struct dmr_C *C, struct entrypoint *ep, struct symbol *label)
{
struct basic_block *bb = label->bb_target;
if (bb) {
set_activeblock(C, ep, bb);
return bb;
}
bb = ep->active;
if (!dmrC_bb_reachable(bb) || !bb_empty(bb)) {
bb = alloc_basic_block(C, ep, label->pos);
set_activeblock(C, ep, bb);
}
label->bb_target = bb;
return bb;
}
static void add_branch(struct dmr_C *C, struct entrypoint *ep, struct expression *expr, pseudo_t cond, struct basic_block *bb_true, struct basic_block *bb_false)
{
(void)expr;
struct basic_block *bb = ep->active;
struct instruction *br;
if (dmrC_bb_reachable(bb)) {
br = alloc_instruction(C, OP_CBR, 0);
dmrC_use_pseudo(C, br, cond, &br->cond);
br->bb_true = bb_true;
br->bb_false = bb_false;
dmrC_add_bb(C, &bb_true->parents, bb);
dmrC_add_bb(C, &bb_false->parents, bb);
dmrC_add_bb(C, &bb->children, bb_true);
dmrC_add_bb(C, &bb->children, bb_false);
add_one_insn(C, ep, br);
}
}
/* Dummy pseudo allocator */
pseudo_t dmrC_alloc_pseudo(struct dmr_C *C, struct instruction *def)
{
struct pseudo * pseudo = (pseudo_t)dmrC_allocator_allocate(&C->L->pseudo_allocator, 0);
pseudo->type = PSEUDO_REG;
pseudo->nr = ++C->L->nr;
pseudo->def = def;
return pseudo;
}
static pseudo_t symbol_pseudo(struct dmr_C *C, struct entrypoint *ep, struct symbol *sym)
{
pseudo_t pseudo;
if (!sym)
return VOID_PSEUDO(C);
pseudo = sym->pseudo;
if (!pseudo) {
pseudo = (pseudo_t)dmrC_allocator_allocate(&C->L->pseudo_allocator, 0);
pseudo->nr = -1;
pseudo->type = PSEUDO_SYM;
pseudo->sym = sym;
pseudo->ident = sym->ident;
sym->pseudo = pseudo;
dmrC_add_pseudo(C, &ep->accesses, pseudo);
}
/* Symbol pseudos have neither nr, usage nor def */
return pseudo;
}
unsigned int dmrC_value_size(long long value)
{
value >>= 8;
if (!value)
return 8;
value >>= 8;
if (!value)
return 16;
value >>= 16;
if (!value)
return 32;
return 64;
}
pseudo_t dmrC_value_pseudo(struct dmr_C *C, struct symbol *type, long long val)
{
int hash = val & (MAX_VAL_HASH-1);
struct pseudo_list **list = C->L->prev + hash;
int size = type ? type->bit_size : dmrC_value_size(val);
pseudo_t pseudo;
assert(size == -1 || size <= (int)(sizeof(long long) * 8));
FOR_EACH_PTR(*list, pseudo) {
if (pseudo->value == val && pseudo->size == size)
return pseudo;
} END_FOR_EACH_PTR(pseudo);
pseudo = (pseudo_t)dmrC_allocator_allocate(&C->L->pseudo_allocator, 0);
pseudo->type = PSEUDO_VAL;
pseudo->value = val;
pseudo->size = size;
dmrC_add_pseudo(C, list, pseudo);
/* Value pseudos have neither nr, usage nor def */
return pseudo;
}
static pseudo_t argument_pseudo(struct dmr_C *C, struct entrypoint *ep, int nr, struct symbol *arg)
{
pseudo_t pseudo = (pseudo_t)dmrC_allocator_allocate(&C->L->pseudo_allocator, 0);
struct instruction *entry = ep->entry;
pseudo->type = PSEUDO_ARG;
pseudo->nr = nr;
pseudo->sym = arg;
dmrC_add_pseudo(C, &entry->arg_list, pseudo);
/* Argument pseudos have neither usage nor def */
return pseudo;
}
// From Luc: sssa-mini
struct instruction *dmrC_alloc_phisrc(struct dmr_C *C, pseudo_t pseudo, struct symbol *type)
{
struct instruction *insn = alloc_typed_instruction(C, OP_PHISOURCE, type);
pseudo_t phi = (pseudo_t)dmrC_allocator_allocate(&C->L->pseudo_allocator, 0);
static int nr = 0;
phi->type = PSEUDO_PHI;
phi->nr = ++nr;
phi->def = insn;
dmrC_use_pseudo(C, insn, pseudo, &insn->phi_src);
insn->target = phi;
return insn;
}
// From Luc: sssa-mini
pseudo_t dmrC_alloc_phi(struct dmr_C *C, struct basic_block *source, pseudo_t pseudo, struct symbol *type)
{
struct instruction *insn;
if (!source)
return VOID_PSEUDO(C);
insn = dmrC_alloc_phisrc(C, pseudo, type);
insn->bb = source;
dmrC_add_instruction(C, &source->insns, insn);
return insn->target;
}
// From Luc: sssa-mini
pseudo_t dmrC_insert_phi_node(struct dmr_C *C, struct basic_block *bb, struct symbol *type)
{
struct instruction *phi_node = alloc_typed_instruction(C, OP_PHI, type);
struct instruction *insn;
pseudo_t phi;
phi = dmrC_alloc_pseudo(C, phi_node);
phi_node->target = phi;
phi_node->bb = bb;
FOR_EACH_PTR(bb->insns, insn) {
enum opcode op = insn->opcode;
if (op == OP_ENTRY || op == OP_PHI)
continue;
INSERT_CURRENT(phi_node, insn);
return phi;
} END_FOR_EACH_PTR(insn);
dmrC_add_instruction(C, &bb->insns, phi_node);
return phi;
}
/*
* We carry the "access_data" structure around for any accesses,
* which simplifies things a lot. It contains all the access
* information in one place.
*/
struct access_data {
struct symbol *result_type; // result ctype
struct symbol *source_type; // source ctype
pseudo_t address; // pseudo containing address ..
unsigned int offset; // byte offset
struct position pos;
};
static void finish_address_gen(struct entrypoint *ep, struct access_data *ad)
{
(void)ep;
(void)ad;
}
static int linearize_simple_address(struct dmr_C *C, struct entrypoint *ep,
struct expression *addr,
struct access_data *ad)
{
if (addr->type == EXPR_SYMBOL) {
linearize_one_symbol(C, ep, addr->symbol);
ad->address = symbol_pseudo(C, ep, addr->symbol);
return 1;
}
if (addr->type == EXPR_BINOP) {
if (addr->right->type == EXPR_VALUE) {
if (addr->op == '+') {
ad->offset += (unsigned int) dmrC_get_expression_value(C, addr->right);
return linearize_simple_address(C, ep, addr->left, ad);
}
}
}
ad->address = linearize_expression(C, ep, addr);
return 1;
}
static struct symbol *base_type(struct dmr_C *C, struct symbol *sym)
{
(void)C;
struct symbol *base = sym;
if (sym) {
if (sym->type == SYM_NODE)
base = base->ctype.base_type;
if (base->type == SYM_BITFIELD)
return base->ctype.base_type;
}
return sym;
}
static int linearize_address_gen(struct dmr_C *C, struct entrypoint *ep,
struct expression *expr,
struct access_data *ad)
{
struct symbol *ctype = expr->ctype;
if (!ctype)
return 0;
ad->pos = expr->pos;
ad->result_type = ctype;
ad->source_type = base_type(C, ctype);
if (expr->type == EXPR_PREOP && expr->op == '*')
return linearize_simple_address(C, ep, expr->unop, ad);
dmrC_warning(C, expr->pos, "generating address of non-lvalue (%d)", expr->type);
return 0;
}
/* Try to get the actual struct type associated with a load or store */
static struct symbol *get_base_symbol_type(struct dmr_C *C, struct access_data *ad) {
(void) C;
struct symbol *orig_type = NULL;
if (ad->address->type == PSEUDO_SYM) {
orig_type = ad->address->sym;
}
else if (ad->address->type == PSEUDO_REG) {
if (ad->address->def->opcode == OP_LOAD) {
orig_type = ad->address->def->orig_type;
}
}
if (orig_type) {
if (orig_type->type == SYM_NODE)
orig_type = orig_type->ctype.base_type;
if (orig_type->type == SYM_PTR)
orig_type = orig_type->ctype.base_type;
//dmrC_show_type(C, orig_type);
}
return orig_type;
}
static pseudo_t add_load(struct dmr_C *C, struct entrypoint *ep, struct access_data *ad)
{
struct instruction *insn;
pseudo_t new;
insn = alloc_typed_instruction(C, OP_LOAD, ad->source_type);
/* save the address symbol so that backend can see what symbol we are accessing */
insn->orig_type = get_base_symbol_type(C, ad);
new = dmrC_alloc_pseudo(C, insn);
insn->target = new;
insn->offset = ad->offset;
dmrC_use_pseudo(C, insn, ad->address, &insn->src);
add_one_insn(C, ep, insn);
return new;
}
static void add_store(struct dmr_C *C, struct entrypoint *ep, struct access_data *ad, pseudo_t value)
{
struct basic_block *bb = ep->active;
if (dmrC_bb_reachable(bb)) {
struct instruction *store = alloc_typed_instruction(C, OP_STORE, ad->source_type);
store->offset = ad->offset;
/* save the address symbol so that backend can see what symbol we are accessing */
store->orig_type = get_base_symbol_type(C, ad);
dmrC_use_pseudo(C, store, value, &store->target);
dmrC_use_pseudo(C, store, ad->address, &store->src);
add_one_insn(C, ep, store);
}
}
static pseudo_t linearize_store_gen(struct dmr_C *C, struct entrypoint *ep,
pseudo_t value,
struct access_data *ad)
{
pseudo_t store = value;
if (type_size(ad->source_type) != type_size(ad->result_type)) {
struct symbol *ctype = ad->result_type;
unsigned int shift = ctype->bit_offset;
unsigned int size = ctype->bit_size;
pseudo_t orig = add_load(C, ep, ad);
unsigned long long mask = (1ULL << size) - 1;
if (shift) {
store = add_binary_op(C, ep, ad->source_type, OP_SHL, value, dmrC_value_pseudo(C, ctype, shift));
mask <<= shift;
}
orig = add_binary_op(C, ep, ad->source_type, OP_AND, orig, dmrC_value_pseudo(C, ctype, ~mask));
store = add_binary_op(C, ep, ad->source_type, OP_OR, orig, store);
}
add_store(C, ep, ad, store);
return value;
}
static pseudo_t add_binary_op(struct dmr_C *C, struct entrypoint *ep, struct symbol *ctype, int op, pseudo_t left, pseudo_t right)
{
struct instruction *insn = alloc_typed_instruction(C, op, ctype);
pseudo_t target = dmrC_alloc_pseudo(C, insn);
insn->target = target;
dmrC_use_pseudo(C, insn, left, &insn->src1);
dmrC_use_pseudo(C, insn, right, &insn->src2);
add_one_insn(C, ep, insn);
return target;
}
static pseudo_t add_setval(struct dmr_C *C, struct entrypoint *ep, struct symbol *ctype, struct expression *val)
{
struct instruction *insn = alloc_typed_instruction(C, OP_SETVAL, ctype);
pseudo_t target = dmrC_alloc_pseudo(C, insn);
insn->target = target;
insn->val = val;
add_one_insn(C, ep, insn);
return target;
}
static pseudo_t add_symbol_address(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
struct instruction *insn = alloc_typed_instruction(C, OP_SYMADDR, expr->ctype);
struct symbol *sym = expr->symbol;
pseudo_t target = dmrC_alloc_pseudo(C, insn);
insn->target = target;
dmrC_use_pseudo(C, insn, symbol_pseudo(C, ep, sym), &insn->symbol);
add_one_insn(C, ep, insn);
return target;
}
static pseudo_t linearize_load_gen(struct dmr_C *C, struct entrypoint *ep, struct access_data *ad)
{
struct symbol *ctype = ad->result_type;
pseudo_t new = add_load(C, ep, ad);
if (ctype->bit_offset) {
pseudo_t shift = dmrC_value_pseudo(C, ctype, ctype->bit_offset);
pseudo_t newval = add_binary_op(C, ep, ad->source_type, OP_LSR, new, shift);
new = newval;
}
if (ctype->bit_size != type_size(ad->source_type))
new = cast_pseudo(C, ep, new, ad->source_type, ad->result_type);
return new;
}
static pseudo_t linearize_access(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
struct access_data ad;
pseudo_t value;
memset(&ad, 0, sizeof ad);
if (!linearize_address_gen(C, ep, expr, &ad))
return VOID_PSEUDO(C);
value = linearize_load_gen(C, ep, &ad);
finish_address_gen(ep, &ad);
return value;
}
/* FIXME: FP */
static pseudo_t linearize_inc_dec(struct dmr_C *C, struct entrypoint *ep, struct expression *expr, int postop)
{
struct access_data ad;
pseudo_t old, new, one;
memset(&ad, 0, sizeof ad);
int op = expr->op == SPECIAL_INCREMENT ? OP_ADD : OP_SUB;
if (!linearize_address_gen(C, ep, expr->unop, &ad))
return VOID_PSEUDO(C);
old = linearize_load_gen(C, ep, &ad);
one = dmrC_value_pseudo(C, expr->ctype, expr->op_value);
new = add_binary_op(C, ep, expr->ctype, op, old, one);
linearize_store_gen(C, ep, new, &ad);
finish_address_gen(ep, &ad);
return postop ? old : new;
}
static pseudo_t add_uniop(struct dmr_C *C, struct entrypoint *ep, struct expression *expr, int op, pseudo_t src)
{
struct instruction *insn = alloc_typed_instruction(C, op, expr->ctype);
pseudo_t new = dmrC_alloc_pseudo(C, insn);
insn->target = new;
dmrC_use_pseudo(C, insn, src, &insn->src1);
add_one_insn(C, ep, insn);
return new;
}
static pseudo_t linearize_slice(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
pseudo_t pre = linearize_expression(C, ep, expr->base);
struct instruction *insn = alloc_typed_instruction(C, OP_SLICE, expr->ctype);
pseudo_t new = dmrC_alloc_pseudo(C, insn);
insn->target = new;
insn->from = expr->r_bitpos;
insn->len = expr->r_nrbits;
dmrC_use_pseudo(C, insn, pre, &insn->base);
add_one_insn(C, ep, insn);
return new;
}
static pseudo_t linearize_regular_preop(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
pseudo_t pre = linearize_expression(C, ep, expr->unop);
switch (expr->op) {
case '+':
return pre;
case '!': {
pseudo_t zero = dmrC_value_pseudo(C, expr->ctype, 0);
return add_binary_op(C, ep, expr->ctype, OP_SET_EQ, pre, zero);
}
case '~':
return add_uniop(C, ep, expr, OP_NOT, pre);
case '-':
return add_uniop(C, ep, expr, OP_NEG, pre);
}
return VOID_PSEUDO(C);
}
static pseudo_t linearize_preop(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
/*
* '*' is an lvalue access, and is fundamentally different
* from an arithmetic operation. Maybe it should have an
* expression type of its own..
*/
if (expr->op == '*')
return linearize_access(C, ep, expr);
if (expr->op == SPECIAL_INCREMENT || expr->op == SPECIAL_DECREMENT)
return linearize_inc_dec(C, ep, expr, 0);
return linearize_regular_preop(C, ep, expr);
}
static pseudo_t linearize_postop(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
return linearize_inc_dec(C, ep, expr, 1);
}
/*
* Casts to pointers are "less safe" than other casts, since
* they imply type-unsafe accesses. "void *" is a special
* case, since you can't access through it anyway without another
* cast.
*/
static struct instruction *alloc_cast_instruction(struct dmr_C *C, struct symbol *src, struct symbol *ctype)
{
int opcode = OP_CAST;
// https://patchwork.kernel.org/patch/9516077/
struct symbol *base = ctype;
if (src->ctype.modifiers & MOD_SIGNED)
opcode = OP_SCAST;
if (base->type == SYM_NODE)
base = base->ctype.base_type;
if (base->type == SYM_PTR) {
base = base->ctype.base_type;
if (base != &C->S->void_ctype)
opcode = OP_PTRCAST;
} else if (base->ctype.base_type == &C->S->fp_type)
opcode = OP_FPCAST;
return alloc_typed_instruction(C, opcode, ctype);
}
static pseudo_t cast_pseudo(struct dmr_C *C, struct entrypoint *ep, pseudo_t src, struct symbol *from, struct symbol *to)
{
pseudo_t result;
struct instruction *insn;
if (src == VOID_PSEUDO(C))
return VOID_PSEUDO(C);
if (!from || !to)
return VOID_PSEUDO(C);
if (from->bit_size < 0 || to->bit_size < 0)
return VOID_PSEUDO(C);
insn = alloc_cast_instruction(C, from, to);
result = dmrC_alloc_pseudo(C, insn);
insn->target = result;
insn->orig_type = from;
dmrC_use_pseudo(C, insn, src, &insn->src);
add_one_insn(C, ep, insn);
return result;
}
static int opcode_sign(struct dmr_C *C, int opcode, struct symbol *ctype)
{
(void)C;
if (ctype && (ctype->ctype.modifiers & MOD_SIGNED)) {
switch(opcode) {
case OP_MULU: case OP_DIVU: case OP_MODU: case OP_LSR:
opcode++;
}
}
return opcode;
}
static inline pseudo_t add_convert_to_bool(struct dmr_C *C, struct entrypoint *ep, pseudo_t src, struct symbol *type)
{
pseudo_t zero;
int op;
if (dmrC_is_bool_type(C->S, type))
return src;
zero = dmrC_value_pseudo(C, type, 0);
op = OP_SET_NE;
return add_binary_op(C, ep, &C->S->bool_ctype, op, src, zero);
}
static pseudo_t linearize_expression_to_bool(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
pseudo_t dst;
dst = linearize_expression(C, ep, expr);
dst = add_convert_to_bool(C, ep, dst, expr->ctype);
return dst;
}
static pseudo_t linearize_assignment(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
struct access_data ad;
struct expression *target = expr->left;
struct expression *src = expr->right;
struct symbol *ctype;
pseudo_t value;
memset(&ad, 0, sizeof ad);
value = linearize_expression(C, ep, src);
if (!target || !linearize_address_gen(C, ep, target, &ad))
return value;
if (expr->op != '=') {
pseudo_t oldvalue = linearize_load_gen(C, ep, &ad);
pseudo_t dst;
static const int op_trans[] = {
[SPECIAL_ADD_ASSIGN - SPECIAL_BASE] = OP_ADD,
[SPECIAL_SUB_ASSIGN - SPECIAL_BASE] = OP_SUB,
[SPECIAL_MUL_ASSIGN - SPECIAL_BASE] = OP_MULU,
[SPECIAL_DIV_ASSIGN - SPECIAL_BASE] = OP_DIVU,
[SPECIAL_MOD_ASSIGN - SPECIAL_BASE] = OP_MODU,
[SPECIAL_SHL_ASSIGN - SPECIAL_BASE] = OP_SHL,
[SPECIAL_SHR_ASSIGN - SPECIAL_BASE] = OP_LSR,
[SPECIAL_AND_ASSIGN - SPECIAL_BASE] = OP_AND,
[SPECIAL_OR_ASSIGN - SPECIAL_BASE] = OP_OR,
[SPECIAL_XOR_ASSIGN - SPECIAL_BASE] = OP_XOR
};
int opcode;
if (!src)
return VOID_PSEUDO(C);
ctype = src->ctype;
oldvalue = cast_pseudo(C, ep, oldvalue, target->ctype, ctype);
opcode = opcode_sign(C, op_trans[expr->op - SPECIAL_BASE], ctype);
dst = add_binary_op(C, ep, ctype, opcode, oldvalue, value);
value = cast_pseudo(C, ep, dst, ctype, expr->ctype);
}
value = linearize_store_gen(C, ep, value, &ad);
finish_address_gen(ep, &ad);
return value;
}
static pseudo_t linearize_call_expression(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
struct expression *arg, *fn;
struct instruction *insn = alloc_typed_instruction(C, OP_CALL, expr->ctype);
pseudo_t retval, call;
struct ctype *ctype = NULL;
struct symbol *fntype;
struct context *context;
if (!expr->ctype) {
dmrC_warning(C, expr->pos, "call with no type!");
return VOID_PSEUDO(C);
}
// first generate all the parameters
FOR_EACH_PTR(expr->args, arg) {
pseudo_t new = linearize_expression(C, ep, arg);
dmrC_use_pseudo(C, insn, new, dmrC_add_pseudo(C, &insn->arguments, new));
} END_FOR_EACH_PTR(arg);
fn = expr->fn;
if (fn->ctype)
ctype = &fn->ctype->ctype;
fntype = fn->ctype;
if (fntype) {
if (fntype->type == SYM_NODE)
fntype = fntype->ctype.base_type;
}
insn->fntype = fntype;
if (fn->type == EXPR_PREOP) {
if (fn->unop->type == EXPR_SYMBOL) {
struct symbol *sym = fn->unop->symbol;
if (sym->ctype.base_type->type == SYM_FN)
fn = fn->unop;
}
}
if (fn->type == EXPR_SYMBOL) {
call = symbol_pseudo(C, ep, fn->symbol);
} else {
call = linearize_expression(C, ep, fn);
}
dmrC_use_pseudo(C, insn, call, &insn->func);
retval = VOID_PSEUDO(C);
if (expr->ctype != &C->S->void_ctype)
retval = dmrC_alloc_pseudo(C, insn);
insn->target = retval;
add_one_insn(C, ep, insn);
if (ctype) {
FOR_EACH_PTR(ctype->contexts, context) {
int in = context->in;
int out = context->out;
int check = 0;
int context_diff;
if (in < 0) {
check = 1;
in = 0;
}
if (out < 0) {
check = 0;
out = 0;
}
context_diff = out - in;
if (check || context_diff) {
insn = alloc_instruction(C, OP_CONTEXT, 0);
insn->increment = context_diff;
insn->check = check;
insn->context_expr = context->context_expr;
add_one_insn(C, ep, insn);
}
} END_FOR_EACH_PTR(context);
}
return retval;
}
static pseudo_t linearize_binop_bool(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
pseudo_t src1, src2, dst;
int op = (expr->op == SPECIAL_LOGICAL_OR) ? OP_OR_BOOL : OP_AND_BOOL;
src1 = linearize_expression_to_bool(C, ep, expr->left);
src2 = linearize_expression_to_bool(C, ep, expr->right);
dst = add_binary_op(C, ep, &C->S->bool_ctype, op, src1, src2);
if (expr->ctype != &C->S->bool_ctype)
dst = cast_pseudo(C, ep, dst, &C->S->bool_ctype, expr->ctype);
return dst;
}
static pseudo_t linearize_binop(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
pseudo_t src1, src2, dst;
static const int opcode[] = {
['+'] = OP_ADD, ['-'] = OP_SUB,
['*'] = OP_MULU, ['/'] = OP_DIVU,
['%'] = OP_MODU, ['&'] = OP_AND,
['|'] = OP_OR, ['^'] = OP_XOR,
[SPECIAL_LEFTSHIFT] = OP_SHL,
[SPECIAL_RIGHTSHIFT] = OP_LSR,
};
int op;
src1 = linearize_expression(C, ep, expr->left);
src2 = linearize_expression(C, ep, expr->right);
op = opcode_sign(C, opcode[expr->op], expr->ctype);
dst = add_binary_op(C, ep, expr->ctype, op, src1, src2);
return dst;
}
static pseudo_t linearize_logical_branch(struct dmr_C *C, struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false);
static pseudo_t linearize_cond_branch(struct dmr_C *C, struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false);
static pseudo_t linearize_select(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
pseudo_t cond, true, false, res;
struct instruction *insn;
true = linearize_expression(C, ep, expr->cond_true);
false = linearize_expression(C, ep, expr->cond_false);
cond = linearize_expression(C, ep, expr->conditional);
insn = alloc_typed_instruction(C, OP_SEL, expr->ctype);
if (!expr->cond_true)
true = cond;
dmrC_use_pseudo(C, insn, cond, &insn->src1);
dmrC_use_pseudo(C, insn, true, &insn->src2);
dmrC_use_pseudo(C, insn, false, &insn->src3);
res = dmrC_alloc_pseudo(C, insn);
insn->target = res;
add_one_insn(C, ep, insn);
return res;
}
static pseudo_t add_join_conditional(struct dmr_C *C, struct entrypoint *ep, struct expression *expr,
pseudo_t phi1, pseudo_t phi2)
{
pseudo_t target;
struct instruction *phi_node;
if (phi1 == VOID_PSEUDO(C))
return phi2;
if (phi2 == VOID_PSEUDO(C))
return phi1;
phi_node = alloc_typed_instruction(C, OP_PHI, expr->ctype);
dmrC_use_pseudo(C, phi_node, phi1, dmrC_add_pseudo(C, &phi_node->phi_list, phi1));
dmrC_use_pseudo(C, phi_node, phi2, dmrC_add_pseudo(C, &phi_node->phi_list, phi2));
phi_node->target = target = dmrC_alloc_pseudo(C, phi_node);
add_one_insn(C, ep, phi_node);
return target;
}
static pseudo_t linearize_short_conditional(struct dmr_C *C, struct entrypoint *ep, struct expression *expr,
struct expression *cond,
struct expression *expr_false)
{
pseudo_t src1, src2;
struct basic_block *bb_false;
struct basic_block *merge = alloc_basic_block(C, ep, expr->pos);
pseudo_t phi1, phi2;
if (!expr_false || !ep->active)
return VOID_PSEUDO(C);
bb_false = alloc_basic_block(C, ep, expr_false->pos);
src1 = linearize_expression(C, ep, cond);
phi1 = dmrC_alloc_phi(C, ep->active, src1, expr->ctype);
add_branch(C, ep, expr, src1, merge, bb_false);
set_activeblock(C, ep, bb_false);
src2 = linearize_expression(C, ep, expr_false);
phi2 = dmrC_alloc_phi(C, ep->active, src2, expr->ctype);
set_activeblock(C, ep, merge);
return add_join_conditional(C, ep, expr, phi1, phi2);
}
static pseudo_t linearize_conditional(struct dmr_C *C, struct entrypoint *ep, struct expression *expr,
struct expression *cond,
struct expression *expr_true,
struct expression *expr_false)
{
pseudo_t src1, src2;
pseudo_t phi1, phi2;
struct basic_block *bb_true, *bb_false, *merge;
if (!cond || !expr_true || !expr_false || !ep->active)
return VOID_PSEUDO(C);
bb_true = alloc_basic_block(C, ep, expr_true->pos);
bb_false = alloc_basic_block(C, ep, expr_false->pos);
merge = alloc_basic_block(C, ep, expr->pos);
linearize_cond_branch(C, ep, cond, bb_true, bb_false);
set_activeblock(C, ep, bb_true);
src1 = linearize_expression(C, ep, expr_true);
phi1 = dmrC_alloc_phi(C, ep->active, src1, expr->ctype);
add_goto(C, ep, merge);
set_activeblock(C, ep, bb_false);
src2 = linearize_expression(C, ep, expr_false);
phi2 = dmrC_alloc_phi(C, ep->active, src2, expr->ctype);
set_activeblock(C, ep, merge);
return add_join_conditional(C, ep, expr, phi1, phi2);
}
static pseudo_t linearize_logical(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
struct expression *shortcut;
shortcut = dmrC_alloc_const_expression(C, expr->pos, expr->op == SPECIAL_LOGICAL_OR);
shortcut->ctype = expr->ctype;
if (expr->op == SPECIAL_LOGICAL_OR)
return linearize_conditional(C, ep, expr, expr->left, shortcut, expr->right);
return linearize_conditional(C, ep, expr, expr->left, expr->right, shortcut);
}
static pseudo_t linearize_compare(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
static const int cmpop[] = {
['>'] = OP_SET_GT, ['<'] = OP_SET_LT,
[SPECIAL_EQUAL] = OP_SET_EQ,
[SPECIAL_NOTEQUAL] = OP_SET_NE,
[SPECIAL_GTE] = OP_SET_GE,
[SPECIAL_LTE] = OP_SET_LE,
[SPECIAL_UNSIGNED_LT] = OP_SET_B,
[SPECIAL_UNSIGNED_GT] = OP_SET_A,
[SPECIAL_UNSIGNED_LTE] = OP_SET_BE,
[SPECIAL_UNSIGNED_GTE] = OP_SET_AE,
};
pseudo_t src1 = linearize_expression(C, ep, expr->left);
pseudo_t src2 = linearize_expression(C, ep, expr->right);
pseudo_t dst = add_binary_op(C, ep, expr->ctype, cmpop[expr->op], src1, src2);
return dst;
}
static pseudo_t linearize_cond_branch(struct dmr_C *C, struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false)
{
pseudo_t cond;
if (!expr || !dmrC_bb_reachable(ep->active))
return VOID_PSEUDO(C);
switch (expr->type) {
case EXPR_STRING:
case EXPR_VALUE:
add_goto(C, ep, expr->value ? bb_true : bb_false);
return VOID_PSEUDO(C);
case EXPR_FVALUE:
add_goto(C, ep, expr->fvalue ? bb_true : bb_false);
return VOID_PSEUDO(C);
case EXPR_LOGICAL:
linearize_logical_branch(C, ep, expr, bb_true, bb_false);
return VOID_PSEUDO(C);
case EXPR_COMPARE:
cond = linearize_compare(C, ep, expr);
add_branch(C, ep, expr, cond, bb_true, bb_false);
break;
case EXPR_PREOP:
if (expr->op == '!')
return linearize_cond_branch(C, ep, expr->unop, bb_false, bb_true);
/* fall through */
default: {
cond = linearize_expression(C, ep, expr);
add_branch(C, ep, expr, cond, bb_true, bb_false);
return VOID_PSEUDO(C);
}
}
return VOID_PSEUDO(C);
}
static pseudo_t linearize_logical_branch(struct dmr_C *C, struct entrypoint *ep, struct expression *expr, struct basic_block *bb_true, struct basic_block *bb_false)
{
struct basic_block *next = alloc_basic_block(C, ep, expr->pos);
if (expr->op == SPECIAL_LOGICAL_OR)
linearize_cond_branch(C, ep, expr->left, bb_true, next);
else
linearize_cond_branch(C, ep, expr->left, next, bb_false);
set_activeblock(C, ep, next);
linearize_cond_branch(C, ep, expr->right, bb_true, bb_false);
return VOID_PSEUDO(C);
}
static pseudo_t linearize_cast(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
pseudo_t src;
struct expression *orig = expr->cast_expression;
if (!orig)
return VOID_PSEUDO(C);
src = linearize_expression(C, ep, orig);
return cast_pseudo(C, ep, src, orig->ctype, expr->ctype);
}
static pseudo_t linearize_position(struct dmr_C *C, struct entrypoint *ep, struct expression *pos, struct access_data *ad)
{
struct expression *init_expr = pos->init_expr;
ad->offset = pos->init_offset;
ad->source_type = base_type(C, init_expr->ctype);
ad->result_type = init_expr->ctype;
return linearize_initializer(C, ep, init_expr, ad);
}
static pseudo_t linearize_initializer(struct dmr_C *C, struct entrypoint *ep, struct expression *initializer, struct access_data *ad)
{
switch (initializer->type) {
case EXPR_INITIALIZER: {
struct expression *expr;
FOR_EACH_PTR(initializer->expr_list, expr) {
linearize_initializer(C, ep, expr, ad);
} END_FOR_EACH_PTR(expr);
break;
}
case EXPR_POS:
linearize_position(C, ep, initializer, ad);
break;
default: {
pseudo_t value = linearize_expression(C, ep, initializer);
ad->source_type = base_type(C, initializer->ctype);
ad->result_type = initializer->ctype;
linearize_store_gen(C, ep, value, ad);
return value;
}
}
return VOID_PSEUDO(C);
}
static void linearize_argument(struct dmr_C *C, struct entrypoint *ep, struct symbol *arg, int nr)
{
struct access_data ad;
memset(&ad, 0, sizeof ad);
ad.source_type = arg;
ad.result_type = arg;
ad.address = symbol_pseudo(C, ep, arg);
linearize_store_gen(C, ep, argument_pseudo(C, ep, nr, arg), &ad);
finish_address_gen(ep, &ad);
}
static pseudo_t linearize_expression(struct dmr_C *C, struct entrypoint *ep, struct expression *expr)
{
if (!expr)
return VOID_PSEUDO(C);
C->L->current_pos = expr->pos;
switch (expr->type) {
case EXPR_SYMBOL:
linearize_one_symbol(C, ep, expr->symbol);
return add_symbol_address(C, ep, expr);
case EXPR_VALUE:
return dmrC_value_pseudo(C, expr->ctype, expr->value);
case EXPR_STRING: case EXPR_FVALUE: case EXPR_LABEL:
return add_setval(C, ep, expr->ctype, expr);
case EXPR_STATEMENT:
return linearize_statement(C, ep, expr->statement);
case EXPR_CALL:
return linearize_call_expression(C, ep, expr);
case EXPR_BINOP:
if (expr->op == SPECIAL_LOGICAL_AND || expr->op == SPECIAL_LOGICAL_OR)
return linearize_binop_bool(C, ep, expr);
return linearize_binop(C, ep, expr);
case EXPR_LOGICAL:
return linearize_logical(C, ep, expr);
case EXPR_COMPARE:
return linearize_compare(C, ep, expr);
case EXPR_SELECT:
return linearize_select(C, ep, expr);
case EXPR_CONDITIONAL:
if (!expr->cond_true)
return linearize_short_conditional(C, ep, expr, expr->conditional, expr->cond_false);
return linearize_conditional(C, ep, expr, expr->conditional,
expr->cond_true, expr->cond_false);
case EXPR_COMMA:
linearize_expression(C, ep, expr->left);
return linearize_expression(C, ep, expr->right);
case EXPR_ASSIGNMENT:
return linearize_assignment(C, ep, expr);
case EXPR_PREOP:
return linearize_preop(C, ep, expr);
case EXPR_POSTOP:
return linearize_postop(C, ep, expr);
case EXPR_CAST:
case EXPR_FORCE_CAST:
case EXPR_IMPLIED_CAST:
return linearize_cast(C, ep, expr);
case EXPR_SLICE:
return linearize_slice(C, ep, expr);
case EXPR_INITIALIZER:
case EXPR_POS:
dmrC_warning(C, expr->pos, "unexpected initializer expression (%d %d)", expr->type, expr->op);
return VOID_PSEUDO(C);
default:
dmrC_warning(C, expr->pos, "unknown expression (%d %d)", expr->type, expr->op);
return VOID_PSEUDO(C);
}
return VOID_PSEUDO(C);
}
static pseudo_t linearize_one_symbol(struct dmr_C *C, struct entrypoint *ep, struct symbol *sym)
{
struct access_data ad;
pseudo_t value;
memset(&ad, 0, sizeof ad);
if (!sym || !sym->initializer || sym->initialized)
return VOID_PSEUDO(C);
/* We need to output these puppies some day too.. */
if (sym->ctype.modifiers & (MOD_STATIC | MOD_TOPLEVEL))
return VOID_PSEUDO(C);
sym->initialized = 1;
ad.address = symbol_pseudo(C, ep, sym);
value = linearize_initializer(C, ep, sym->initializer, &ad);
finish_address_gen(ep, &ad);
return value;
}
static pseudo_t linearize_compound_statement(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
pseudo_t pseudo;
struct statement *s;
struct symbol *ret = stmt->ret;
pseudo = VOID_PSEUDO(C);
FOR_EACH_PTR(stmt->stmts, s) {
pseudo = linearize_statement(C, ep, s);
} END_FOR_EACH_PTR(s);
if (ret) {
struct basic_block *bb = add_label(C, ep, ret);
struct instruction *phi_node = dmrC_first_instruction(bb->insns);
if (!phi_node)
return pseudo;
#if 0
/* https://github.com/lucvoo/sparse/commit/1609176c9 */
if (dmrC_pseudo_list_size(phi_node->phi_list)==1) {
pseudo = dmrC_first_pseudo(phi_node->phi_list);
assert(pseudo->type == PSEUDO_PHI);
return pseudo->def->src1;
}
#endif
return phi_node->target;
}
return pseudo;
}
static pseudo_t linearize_inlined_call(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
struct instruction *insn = alloc_instruction(C, OP_INLINED_CALL, 0);
struct statement *args = stmt->args;
struct basic_block *bb;
pseudo_t pseudo;
if (args) {
struct symbol *sym;
dmrC_concat_symbol_list(args->declaration, &ep->syms);
FOR_EACH_PTR(args->declaration, sym) {
pseudo_t value = linearize_one_symbol(C, ep, sym);
dmrC_use_pseudo(C, insn, value, dmrC_add_pseudo(C, &insn->arguments, value));
} END_FOR_EACH_PTR(sym);
}
insn->target = pseudo = linearize_compound_statement(C, ep, stmt);
dmrC_use_pseudo(C, insn, symbol_pseudo(C, ep, stmt->inline_fn), &insn->func);
bb = ep->active;
if (bb && !bb->insns)
bb->pos = stmt->pos;
add_one_insn(C, ep, insn);
return pseudo;
}
static pseudo_t linearize_context(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
struct instruction *insn = alloc_instruction(C, OP_CONTEXT, 0);
struct expression *expr = stmt->expression;
int value = 0;
if (expr->type == EXPR_VALUE)
value = (int) expr->value;
insn->increment = value;
insn->context_expr = stmt->context;
add_one_insn(C, ep, insn);
return VOID_PSEUDO(C);
}
static pseudo_t linearize_range(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
struct instruction *insn = alloc_instruction(C, OP_RANGE, 0);
dmrC_use_pseudo(C, insn, linearize_expression(C, ep, stmt->range_expression), &insn->src1);
dmrC_use_pseudo(C, insn, linearize_expression(C, ep, stmt->range_low), &insn->src2);
dmrC_use_pseudo(C, insn, linearize_expression(C, ep, stmt->range_high), &insn->src3);
add_one_insn(C, ep, insn);
return VOID_PSEUDO(C);
}
static void add_asm_input(struct dmr_C *C, struct entrypoint *ep, struct instruction *insn, struct expression *expr,
const char *constraint, const struct ident *ident)
{
pseudo_t pseudo = linearize_expression(C, ep, expr);
struct asm_constraint *rule = (struct asm_constraint *)dmrC_allocator_allocate(&C->L->asm_constraint_allocator, 0);
rule->ident = ident;
rule->constraint = constraint;
dmrC_use_pseudo(C, insn, pseudo, &rule->pseudo);
ptrlist_add((struct ptr_list **)&insn->asm_rules->inputs, rule, &C->ptrlist_allocator);
}
static void add_asm_output(struct dmr_C *C, struct entrypoint *ep, struct instruction *insn, struct expression *expr,
const char *constraint, const struct ident *ident)
{
struct access_data ad;
pseudo_t pseudo = dmrC_alloc_pseudo(C, insn);
struct asm_constraint *rule;
memset(&ad, 0, sizeof ad);
if (!expr || !linearize_address_gen(C, ep, expr, &ad))
return;
linearize_store_gen(C, ep, pseudo, &ad);
finish_address_gen(ep, &ad);
rule = (struct asm_constraint *) dmrC_allocator_allocate(&C->L->asm_constraint_allocator, 0);
rule->ident = ident;
rule->constraint = constraint;
dmrC_use_pseudo(C, insn, pseudo, &rule->pseudo);
ptrlist_add((struct ptr_list **)&insn->asm_rules->outputs, rule, &C->ptrlist_allocator);
}
static pseudo_t linearize_asm_statement(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
int state;
struct expression *expr;
struct instruction *insn;
struct asm_rules *rules;
const char *constraint;
struct ident *ident;
insn = alloc_instruction(C, OP_ASM, 0);
expr = stmt->asm_string;
if (!expr || expr->type != EXPR_STRING) {
dmrC_warning(C, stmt->pos, "expected string in inline asm");
return VOID_PSEUDO(C);
}
insn->string = expr->string->data;
rules = (struct asm_rules *) dmrC_allocator_allocate(&C->L->asm_rules_allocator, 0);
insn->asm_rules = rules;
/* Gather the inputs.. */
state = 0;
ident = NULL;
constraint = NULL;
FOR_EACH_PTR(stmt->asm_inputs, expr) {
switch (state) {
case 0: /* Identifier */
state = 1;
ident = (struct ident *)expr;
continue;
case 1: /* Constraint */
state = 2;
constraint = expr ? expr->string->data : "";
continue;
case 2: /* Expression */
state = 0;
add_asm_input(C, ep, insn, expr, constraint, ident);
}
} END_FOR_EACH_PTR(expr);
add_one_insn(C, ep, insn);
/* Assign the outputs */
state = 0;
ident = NULL;
constraint = NULL;
FOR_EACH_PTR(stmt->asm_outputs, expr) {
switch (state) {
case 0: /* Identifier */
state = 1;
ident = (struct ident *)expr;
continue;
case 1: /* Constraint */
state = 2;
constraint = expr ? expr->string->data : "";
continue;
case 2:
state = 0;
add_asm_output(C, ep, insn, expr, constraint, ident);
}
} END_FOR_EACH_PTR(expr);
return VOID_PSEUDO(C);
}
static int multijmp_cmp(void *ud, const void *_a, const void *_b)
{
(void) ud;
const struct multijmp *a = (const struct multijmp *)_a;
const struct multijmp *b = (const struct multijmp *)_b;
// "default" case?
if (a->begin > a->end) {
if (b->begin > b->end)
return 0;
return 1;
}
if (b->begin > b->end)
return -1;
if (a->begin == b->begin) {
if (a->end == b->end)
return 0;
return (a->end < b->end) ? -1 : 1;
}
return a->begin < b->begin ? -1 : 1;
}
static void sort_switch_cases(struct dmr_C *C, struct instruction *insn)
{
ptrlist_sort((struct ptr_list **)&insn->multijmp_list, C, multijmp_cmp);
}
static pseudo_t linearize_declaration(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
struct symbol *sym;
dmrC_concat_symbol_list(stmt->declaration, &ep->syms);
FOR_EACH_PTR(stmt->declaration, sym) {
linearize_one_symbol(C, ep, sym);
} END_FOR_EACH_PTR(sym);
return VOID_PSEUDO(C);
}
static pseudo_t linearize_return(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
struct expression *expr = stmt->expression;
struct basic_block *bb_return = get_bound_block(C, ep, stmt->ret_target);
struct basic_block *active;
pseudo_t src = linearize_expression(C, ep, expr);
active = ep->active;
if (active && src != VOID_PSEUDO(C)) {
struct instruction *phi_node = dmrC_first_instruction(bb_return->insns);
pseudo_t phi;
if (!phi_node) {
phi_node = alloc_typed_instruction(C, OP_PHI, expr->ctype);
phi_node->target = dmrC_alloc_pseudo(C, phi_node);
phi_node->bb = bb_return;
dmrC_add_instruction(C, &bb_return->insns, phi_node);
}
phi = dmrC_alloc_phi(C, active, src, expr->ctype);
phi->ident = C->S->return_ident;
dmrC_use_pseudo(C, phi_node, phi, dmrC_add_pseudo(C, &phi_node->phi_list, phi));
}
add_goto(C, ep, bb_return);
return VOID_PSEUDO(C);
}
static pseudo_t linearize_switch(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
struct symbol *sym;
struct instruction *switch_ins;
struct basic_block *switch_end = alloc_basic_block(C, ep, stmt->pos);
struct basic_block *active, *default_case;
struct expression *expr = stmt->switch_expression;
struct multijmp *jmp;
pseudo_t pseudo;
pseudo = linearize_expression(C, ep, expr);
active = ep->active;
if (!dmrC_bb_reachable(active))
return VOID_PSEUDO(C);
switch_ins = alloc_typed_instruction(C, OP_SWITCH, expr->ctype);
dmrC_use_pseudo(C, switch_ins, pseudo, &switch_ins->cond);
add_one_insn(C, ep, switch_ins);
finish_block(ep);
default_case = NULL;
FOR_EACH_PTR(stmt->switch_case->symbol_list, sym) {
struct statement *case_stmt = sym->stmt;
struct basic_block *bb_case = get_bound_block(C, ep, sym);
if (!case_stmt->case_expression) {
default_case = bb_case;
continue;
} else {
long long begin, end;
begin = end = case_stmt->case_expression->value;
if (case_stmt->case_to)
end = case_stmt->case_to->value;
if (begin > end)
jmp = alloc_multijmp(C, bb_case, end, begin);
else
jmp = alloc_multijmp(C, bb_case, begin, end);
}
dmrC_add_multijmp(C, &switch_ins->multijmp_list, jmp);
dmrC_add_bb(C, &bb_case->parents, active);
dmrC_add_bb(C, &active->children, bb_case);
} END_FOR_EACH_PTR(sym);
bind_label(C, stmt->switch_break, switch_end, stmt->pos);
/* And linearize the actual statement */
linearize_statement(C, ep, stmt->switch_statement);
set_activeblock(C, ep, switch_end);
if (!default_case)
default_case = switch_end;
jmp = alloc_multijmp(C, default_case, 1, 0);
dmrC_add_multijmp(C, &switch_ins->multijmp_list, jmp);
dmrC_add_bb(C, &default_case->parents, active);
dmrC_add_bb(C, &active->children, default_case);
sort_switch_cases(C, switch_ins);
return VOID_PSEUDO(C);
}
static pseudo_t linearize_iterator(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
struct statement *pre_statement = stmt->iterator_pre_statement;
struct expression *pre_condition = stmt->iterator_pre_condition;
struct statement *statement = stmt->iterator_statement;
struct statement *post_statement = stmt->iterator_post_statement;
struct expression *post_condition = stmt->iterator_post_condition;
struct basic_block *loop_top, *loop_body, *loop_continue, *loop_end;
struct symbol *sym;
FOR_EACH_PTR(stmt->iterator_syms, sym) {
linearize_one_symbol(C, ep, sym);
} END_FOR_EACH_PTR(sym);
dmrC_concat_symbol_list(stmt->iterator_syms, &ep->syms);
linearize_statement(C, ep, pre_statement);
loop_body = loop_top = alloc_basic_block(C, ep, stmt->pos);
loop_continue = alloc_basic_block(C, ep, stmt->pos);
loop_end = alloc_basic_block(C, ep, stmt->pos);
/* An empty post-condition means that it's the same as the pre-condition */
if (!post_condition) {
loop_top = alloc_basic_block(C, ep, stmt->pos);
set_activeblock(C, ep, loop_top);
}
if (pre_condition)
linearize_cond_branch(C, ep, pre_condition, loop_body, loop_end);
bind_label(C, stmt->iterator_continue, loop_continue, stmt->pos);
bind_label(C, stmt->iterator_break, loop_end, stmt->pos);
set_activeblock(C, ep, loop_body);
linearize_statement(C, ep, statement);
add_goto(C, ep, loop_continue);
set_activeblock(C, ep, loop_continue);
linearize_statement(C, ep, post_statement);
if (!post_condition)
add_goto(C, ep, loop_top);
else
linearize_cond_branch(C, ep, post_condition, loop_top, loop_end);
set_activeblock(C, ep, loop_end);
return VOID_PSEUDO(C);
}
static pseudo_t linearize_statement(struct dmr_C *C, struct entrypoint *ep, struct statement *stmt)
{
struct basic_block *bb;
if (!stmt)
return VOID_PSEUDO(C);
bb = ep->active;
if (bb && !bb->insns)
bb->pos = stmt->pos;
C->L->current_pos = stmt->pos;
switch (stmt->type) {
case STMT_NONE:
break;
case STMT_DECLARATION:
return linearize_declaration(C, ep, stmt);
case STMT_CONTEXT:
return linearize_context(C, ep, stmt);
case STMT_RANGE:
return linearize_range(C, ep, stmt);
case STMT_EXPRESSION:
return linearize_expression(C, ep, stmt->expression);
case STMT_ASM:
return linearize_asm_statement(C, ep, stmt);
case STMT_RETURN:
return linearize_return(C, ep, stmt);
case STMT_CASE: {
add_label(C, ep, stmt->case_label);
linearize_statement(C, ep, stmt->case_statement);
break;
}
case STMT_LABEL: {
struct symbol *label = stmt->label_identifier;
if (label->used) {
bb = add_label(C, ep, label);
}
return linearize_statement(C, ep, stmt->label_statement);
}
case STMT_GOTO: {
struct symbol *sym;
struct expression *expr;
struct instruction *goto_ins;
struct basic_block *active;
pseudo_t pseudo;
active = ep->active;
if (!dmrC_bb_reachable(active))
break;
if (stmt->goto_label) {
add_goto(C, ep, get_bound_block(C, ep, stmt->goto_label));
break;
}
expr = stmt->goto_expression;
if (!expr)
break;
/* This can happen as part of simplification */
if (expr->type == EXPR_LABEL) {
add_goto(C, ep, get_bound_block(C, ep, expr->label_symbol));
break;
}
pseudo = linearize_expression(C, ep, expr);
goto_ins = alloc_instruction(C, OP_COMPUTEDGOTO, 0);
dmrC_use_pseudo(C, goto_ins, pseudo, &goto_ins->target);
add_one_insn(C, ep, goto_ins);
FOR_EACH_PTR(stmt->target_list, sym) {
struct basic_block *bb_computed = get_bound_block(C, ep, sym);
struct multijmp *jmp = alloc_multijmp(C, bb_computed, 1, 0);
dmrC_add_multijmp(C, &goto_ins->multijmp_list, jmp);
dmrC_add_bb(C, &bb_computed->parents, ep->active);
dmrC_add_bb(C, &active->children, bb_computed);
} END_FOR_EACH_PTR(sym);
finish_block(ep);
break;
}
case STMT_COMPOUND:
if (stmt->inline_fn)
return linearize_inlined_call(C, ep, stmt);
return linearize_compound_statement(C, ep, stmt);
/*
* This could take 'likely/unlikely' into account, and
* switch the arms around appropriately..
*/
case STMT_IF: {
struct basic_block *bb_true, *bb_false, *endif;
struct expression *cond = stmt->if_conditional;
bb_true = alloc_basic_block(C, ep, stmt->pos);
bb_false = endif = alloc_basic_block(C, ep, stmt->pos);
linearize_cond_branch(C, ep, cond, bb_true, bb_false);
set_activeblock(C, ep, bb_true);
linearize_statement(C, ep, stmt->if_true);
if (stmt->if_false) {
endif = alloc_basic_block(C, ep, stmt->pos);
add_goto(C, ep, endif);
set_activeblock(C, ep, bb_false);
linearize_statement(C, ep, stmt->if_false);
}
set_activeblock(C, ep, endif);
break;
}
case STMT_SWITCH:
return linearize_switch(C, ep, stmt);
case STMT_ITERATOR:
return linearize_iterator(C, ep, stmt);
default:
break;
}
return VOID_PSEUDO(C);
}
static struct entrypoint *linearize_fn(struct dmr_C *C, struct symbol *sym, struct symbol *base_type)
{
struct entrypoint *ep;
struct basic_block *bb;
struct symbol *arg;
struct instruction *entry;
pseudo_t result;
int i;
if (!base_type->stmt)
return NULL;
ep = alloc_entrypoint(C);
bb = alloc_basic_block(C, ep, sym->pos);
ep->name = sym;
sym->ep = ep;
set_activeblock(C, ep, bb);
entry = alloc_instruction(C, OP_ENTRY, 0);
add_one_insn(C, ep, entry);
ep->entry = entry;
dmrC_concat_symbol_list(base_type->arguments, &ep->syms);
/* FIXME!! We should do something else about varargs.. */
i = 0;
FOR_EACH_PTR(base_type->arguments, arg) {
linearize_argument(C, ep, arg, ++i);
} END_FOR_EACH_PTR(arg);
result = linearize_statement(C, ep, base_type->stmt);
if (dmrC_bb_reachable(ep->active) && !dmrC_bb_terminated(ep->active)) {
struct symbol *ret_type = base_type->ctype.base_type;
struct instruction *insn = alloc_typed_instruction(C, OP_RET, ret_type);
if (type_size(ret_type) > 0)
dmrC_use_pseudo(C, insn, result, &insn->src);
add_one_insn(C, ep, insn);
}
int show_details = C->verbose > 2;
if (show_details) {
printf("%s(%d): pre dmrC_kill_unreachable_bbs()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
if (C->fdump_linearize) {
if (C->fdump_linearize == 2)
return ep;
dmrC_show_entry(C, ep);
}
/*
* Do trivial flow simplification - branches to
* branches, kill dead basicblocks etc
*/
dmrC_kill_unreachable_bbs(C, ep);
#if 0
if (C->optimize) {
if (show_details) {
printf("%s(%d): pre dmrC_simplify_symbol_usage()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
/*
* Turn symbols into pseudos
*/
dmrC_simplify_symbol_usage(C, ep);
repeat:
/*
* Remove trivial instructions, and try to CSE
* the rest.
*/
do {
if (show_details) {
printf("%s(%d): pre dmrC_cleanup_and_cse()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
dmrC_cleanup_and_cse(C, ep);
if (show_details) {
printf("%s(%d): pre dmrC_pack_basic_blocks()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
dmrC_pack_basic_blocks(C, ep);
} while (C->L->repeat_phase & REPEAT_CSE);
if (show_details) {
printf("%s(%d): pre dmrC_kill_unreachable_bbs() and dmrC_vrfy_flow()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
dmrC_kill_unreachable_bbs(C, ep);
dmrC_vrfy_flow(ep);
if (show_details) {
printf("%s(%d): pre clear_symbol_pseudos()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
/* Cleanup */
clear_symbol_pseudos(ep);
if (show_details) {
printf("%s(%d): pre dmrC_track_pseudo_liveness()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
/* And track pseudo register usage */
dmrC_track_pseudo_liveness(C, ep);
if (show_details) {
printf("%s(%d): pre dmrC_simplify_flow()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
/*
* Some flow optimizations can only effectively
* be done when we've done liveness analysis. But
* if they trigger, we need to start all over
* again
*/
if (dmrC_simplify_flow(C, ep)) {
if (show_details) {
printf("%s(%d): pre dmrC_clear_liveness()\n", __FILE__, __LINE__);
dmrC_show_entry(C, ep);
}
dmrC_clear_liveness(ep);
goto repeat;
}
}
#endif
/* Finally, add deathnotes to pseudos now that we have them */
if (C->dbg_dead)
/* Note that this sets phi_users list on phisrc instructions which are relied upon by the
LLVM backend */
dmrC_track_pseudo_death(C, ep);
return ep;
}
struct entrypoint *dmrC_linearize_symbol(struct dmr_C *C, struct symbol *sym)
{
struct symbol *base_type;
if (!sym)
return NULL;
C->L->current_pos = sym->pos;
base_type = sym->ctype.base_type;
if (!base_type)
return NULL;
if (base_type->type == SYM_FN)
return linearize_fn(C, sym, base_type);
return NULL;
}
static void mark_bb_reachable(struct basic_block *bb, unsigned long generation)
{
struct basic_block *child;
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR(bb->children, child) {
mark_bb_reachable(child, generation);
} END_FOR_EACH_PTR(child);
}
void dmrC_kill_unreachable_bbs(struct dmr_C *C, struct entrypoint *ep)
{
struct basic_block *bb;
unsigned long generation = ++C->L->bb_generation;
mark_bb_reachable(ep->entry->bb, generation);
FOR_EACH_PTR(ep->bbs, bb) {
if (bb->generation == generation)
continue;
/* Mark it as being dead */
dmrC_kill_bb(C, bb);
bb->ep = NULL;
DELETE_CURRENT_PTR(bb);
} END_FOR_EACH_PTR(bb);
ptrlist_pack((struct ptr_list **) &ep->bbs);
}
static int delete_pseudo_user_list_entry(struct dmr_C *C, struct pseudo_user_list **list, pseudo_t *entry, int count)
{
(void)C;
struct pseudo_user *pu;
FOR_EACH_PTR(*list, pu) {
if (pu->userp == entry) {
MARK_CURRENT_DELETED(struct pseudo_user *, pu);
if (!--count)
goto out;
}
} END_FOR_EACH_PTR(pu);
assert(count <= 0);
out:
if (ptrlist_size((struct ptr_list *)*list) == 0)
*list = NULL;
return count;
}
static inline void remove_usage(struct dmr_C *C, pseudo_t p, pseudo_t *usep)
{
if (dmrC_has_use_list(p)) {
delete_pseudo_user_list_entry(C, &p->users, usep, 1);
if (!p->users)
dmrC_kill_instruction(C, p->def);
}
}
static inline void concat_user_list(struct pseudo_user_list *src, struct pseudo_user_list **dst)
{
ptrlist_concat((struct ptr_list *)src, (struct ptr_list **)dst);
}
void dmrC_convert_instruction_target(struct dmr_C *C, struct instruction *insn, pseudo_t src)
{
pseudo_t target;
struct pseudo_user *pu;
/*
* Go through the "insn->users" list and replace them all..
*/
target = insn->target;
if (target == src)
return;
FOR_EACH_PTR(target->users, pu) {
if (*pu->userp != VOID_PSEUDO(C)) {
assert(*pu->userp == target);
*pu->userp = src;
}
} END_FOR_EACH_PTR(pu);
if (dmrC_has_use_list(src))
concat_user_list(target->users, &src->users);
target->users = NULL;
}
static void kill_defs(struct dmr_C *C, struct instruction *insn)
{
pseudo_t target = insn->target;
if (!dmrC_has_use_list(target))
return;
if (target->def != insn)
return;
dmrC_convert_instruction_target(C, insn, VOID_PSEUDO(C));
}
void dmrC_kill_bb(struct dmr_C *C, struct basic_block *bb)
{
struct instruction *insn;
struct basic_block *child, *parent;
FOR_EACH_PTR(bb->insns, insn) {
dmrC_kill_instruction_force(C, insn);
kill_defs(C, insn);
/*
* We kill unreachable instructions even if they
* otherwise aren't "killable" (e.g. volatile loads)
*/
} END_FOR_EACH_PTR(insn);
bb->insns = NULL;
FOR_EACH_PTR(bb->children, child) {
dmrC_remove_bb_from_list(&child->parents, bb, 0);
} END_FOR_EACH_PTR(child);
bb->children = NULL;
FOR_EACH_PTR(bb->parents, parent) {
dmrC_remove_bb_from_list(&parent->children, bb, 0);
} END_FOR_EACH_PTR(parent);
bb->parents = NULL;
}
void dmrC_kill_use(struct dmr_C *C, pseudo_t *usep)
{
if (usep) {
pseudo_t p = *usep;
*usep = VOID_PSEUDO(C);
remove_usage(C, p, usep);
}
}
static void kill_use_list(struct dmr_C *C, struct pseudo_list *list)
{
pseudo_t p;
FOR_EACH_PTR(list, p) {
if (p == VOID_PSEUDO(C))
continue;
dmrC_kill_use(C, THIS_ADDRESS(pseudo_t, p));
} END_FOR_EACH_PTR(p);
}
/*
* kill an instruction:
* - remove it from its bb
* - remove the usage of all its operands
* If forse is zero, the normal case, the function only for
* instructions free of (possible) side-effects. Otherwise
* the function does that unconditionally (must only be used
* for unreachable instructions.
*/
void dmrC_kill_insn(struct dmr_C *C, struct instruction *insn, int force)
{
if (!insn || !insn->bb)
return;
switch (insn->opcode) {
case OP_SEL:
case OP_RANGE:
dmrC_kill_use(C, &insn->src3);
/* fall through */
case OP_ADD:
case OP_SUB:
case OP_MULU:
case OP_MULS:
case OP_DIVU:
case OP_DIVS:
case OP_MODU:
case OP_MODS:
case OP_SHL:
case OP_LSR:
case OP_ASR:
/* Logical */
case OP_AND:
case OP_OR:
case OP_XOR:
case OP_AND_BOOL:
case OP_OR_BOOL:
case OP_SET_EQ:
case OP_SET_NE:
case OP_SET_LE:
case OP_SET_GE:
case OP_SET_LT:
case OP_SET_GT:
case OP_SET_B:
case OP_SET_A:
case OP_SET_BE:
case OP_SET_AE:
dmrC_kill_use(C, &insn->src2);
/* fall through */
case OP_CAST:
case OP_SCAST:
case OP_FPCAST:
case OP_PTRCAST:
case OP_SETVAL:
case OP_NOT: case OP_NEG:
case OP_SLICE:
dmrC_kill_use(C, &insn->src1);
break;
case OP_PHI:
kill_use_list(C, insn->phi_list);
break;
case OP_PHISOURCE:
dmrC_kill_use(C, &insn->phi_src);
break;
case OP_SYMADDR:
C->L->repeat_phase |= REPEAT_SYMBOL_CLEANUP;
break;
case OP_CBR:
/* fall through */
case OP_COMPUTEDGOTO:
dmrC_kill_use(C, &insn->cond);
break;
case OP_CALL:
if (!force) {
/* a "pure" function can be killed too */
if (!(insn->func->type == PSEUDO_SYM))
return;
if (!(insn->func->sym->ctype.modifiers & MOD_PURE))
return;
}
kill_use_list(C, insn->arguments);
if (insn->func->type == PSEUDO_REG)
dmrC_kill_use(C, &insn->func);
break;
case OP_LOAD:
if (!force && insn->type->ctype.modifiers & MOD_VOLATILE)
return;
dmrC_kill_use(C, &insn->src);
break;
case OP_STORE:
if (!force)
return;
dmrC_kill_use(C, &insn->src);
dmrC_kill_use(C, &insn->target);
break;
case OP_ENTRY:
/* ignore */
return;
case OP_BR:
default:
break;
}
insn->bb = NULL;
C->L->repeat_phase |= REPEAT_CSE;
return;
}
void dmrC_init_linearizer(struct dmr_C *C) {
struct linearizer_state_t *L = (struct linearizer_state_t *)calloc(1, sizeof(struct linearizer_state_t));
dmrC_allocator_init(&L->asm_rules_allocator, "asm rules", sizeof(struct asm_rules),
__alignof__(struct asm_rules), CHUNK);
dmrC_allocator_init(&L->pseudo_allocator, "pseudos", sizeof(struct pseudo),
__alignof__(struct pseudo), CHUNK);
dmrC_allocator_init(&L->pseudo_user_allocator, "pseudo_users", sizeof(struct pseudo_user),
__alignof__(struct pseudo_user), CHUNK);
dmrC_allocator_init(&L->asm_constraint_allocator, "asm_constraints", sizeof(struct asm_constraint),
__alignof__(struct asm_constraint), CHUNK);
dmrC_allocator_init(&L->multijmp_allocator, "multijmps", sizeof(struct multijmp),
__alignof__(struct multijmp), CHUNK);
dmrC_allocator_init(&L->basic_block_allocator, "basic_blocks", sizeof(struct basic_block),
__alignof__(struct basic_block), CHUNK);
dmrC_allocator_init(&L->entrypoint_allocator, "entrypoints", sizeof(struct entrypoint),
__alignof__(struct entrypoint), CHUNK);
dmrC_allocator_init(&L->instruction_allocator, "instructions", sizeof(struct instruction),
__alignof__(struct instruction), CHUNK);
C->L = L;
}
void dmrC_destroy_linearizer(struct dmr_C *C) {
struct linearizer_state_t *L = C->L;
assert(L);
dmrC_allocator_destroy(&L->asm_rules_allocator);
dmrC_allocator_destroy(&L->pseudo_allocator);
dmrC_allocator_destroy(&L->pseudo_user_allocator);
dmrC_allocator_destroy(&L->asm_constraint_allocator);
dmrC_allocator_destroy(&L->multijmp_allocator);
dmrC_allocator_destroy(&L->basic_block_allocator);
dmrC_allocator_destroy(&L->entrypoint_allocator);
dmrC_allocator_destroy(&L->instruction_allocator);
free(L);
C->L = NULL;
}