You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ravi/src/lopcodes.h

358 lines
13 KiB

/*
** $Id: lopcodes.h,v 1.149.1.1 2017/04/19 17:20:42 roberto Exp $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/
#ifndef lopcodes_h
#define lopcodes_h
#include "llimits.h"
/*===========================================================================
We assume that instructions are unsigned numbers.
All instructions have an opcode in the first 8 bits.
Instructions can have the following fields:
'A' : 8 bits (7 bits used)
'B' : 8 bits
'C' : 8 bits
'Ax' : 24 bits ('A', 'B', and 'C' together)
'Bx' : 16 bits ('B' and 'C' together)
'sBx' : signed Bx
Above is based on LuaJIT scheme but unlike LuaJIT A is actually
represented in 7 bits.
A signed argument is represented in excess K; that is, the number
value is the unsigned value minus K. K is exactly the maximum value
for that argument (so that -max is represented by 0, and +max is
represented by 2*max), which is half the maximum for the corresponding
unsigned argument.
===========================================================================*/
enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
#include "ravi_arch.h"
/*
The bytecode layout here uses LuaJIT inspired format.
+---+---+---+----+
| B | C | A | Op |
+---+---+---+----+
| Bx | A | Op |
+-------+---+----+
| Ax | Op |
+-----------+----+
*/
#define MAXARG_A 0x7f
#define MAXARG_B 0xff
#define MAXARG_C 0xff
#define MAXARG_Bx 0xffff
#define MAXARG_Ax 0xffffff
#define GET_OPCODE(i) cast(OpCode, ((i)&0xff))
#define GETARG_A(i) cast(int, ((i)>>8)&0x7f)
#define GETARG_B(i) cast(int, (i)>>24)
#define GETARG_C(i) cast(int, ((i)>>16)&0xff)
#define GETARG_Bx(i) cast(int, (i)>>16)
#define GETARG_Ax(i) cast(int, (i)>>8)
#define GETARG_sBx(i) (((int)GETARG_Bx(i))-MAXARG_sBx)
#define MAXARG_sBx 0x8000
#define setbc_byte(p, x, ofs) \
((lu_byte *)(&(p)))[RAVI_ENDIAN_SELECT(ofs, 3-ofs)] = ((lu_byte)cast(Instruction, x))
#define SET_OPCODE(p, x) setbc_byte(p, (x), 0)
#define SETARG_A(p, x) setbc_byte(p, ((x)&0x7f), 1)
#define SETARG_B(p, x) setbc_byte(p, (x), 3)
#define SETARG_C(p, x) setbc_byte(p, (x), 2)
#define SETARG_Bx(p, x) \
((unsigned short *)(&(p)))[RAVI_ENDIAN_SELECT(1, 0)] = (unsigned short)(cast(Instruction, x))
#define SETARG_sBx(p, x) SETARG_Bx(p, cast(unsigned int, cast(Instruction, x)+MAXARG_sBx))
#define SETARG_Ax(p, x) p = (cast(Instruction, p)&0xff | (cast(Instruction, x)<<8))
#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)) \
| (cast(Instruction, a)<<8) \
| (cast(Instruction, b)<<24) \
| (cast(Instruction, c)<<16))
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)) \
| (cast(Instruction, a)<<8) \
| (cast(Instruction, bc)<<16))
#define CREATE_Ax(o,a) ((cast(Instruction, o)) \
| (cast(Instruction, a)<<8))
/* this bit 1 means constant (0 means register) */
#define BITRK 0x80
/* test whether value is a constant */
#define ISK(x) ((x) & BITRK)
/* gets the index of the constant */
#define INDEXK(r) ((int)(r) & ~BITRK)
#if !defined(MAXINDEXRK) /* (for debugging only) */
#define MAXINDEXRK (BITRK - 1)
#endif
/* code a constant index as a RK value */
#define RKASK(x) ((x) | BITRK)
/*
** invalid register that fits in 8 bits
*/
#define NO_REG MAXARG_A
/*
** R(x) - register
** Kst(x) - constant (in constant table)
** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
*/
/*
** grep "ORDER OP" if you change these enums
*/
typedef enum {
/*----------------------------------------------------------------------
name args description
------------------------------------------------------------------------*/
OP_MOVE,/* A B R(A) := R(B) */
OP_LOADK,/* A Bx R(A) := Kst(Bx) */
OP_LOADKX,/* A R(A) := Kst(extra arg) */
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
OP_GETUPVAL,/* A B R(A) := UpValue[B] */
OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */
OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */
OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */
OP_SETUPVAL,/* A B UpValue[B] := R(A) */
OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */
OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */
OP_ADD,/* A B C R(A) := RK(B) + RK(C) */
OP_SUB,/* A B C R(A) := RK(B) - RK(C) */
OP_MUL,/* A B C R(A) := RK(B) * RK(C) */
OP_MOD,/* A B C R(A) := RK(B) % RK(C) */
OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */
OP_DIV,/* A B C R(A) := RK(B) / RK(C) */
OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */
OP_BAND,/* A B C R(A) := RK(B) & RK(C) */
OP_BOR,/* A B C R(A) := RK(B) | RK(C) */
OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */
OP_SHL,/* A B C R(A) := RK(B) << RK(C) */
OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */
OP_UNM,/* A B R(A) := -R(B) */
OP_BNOT,/* A B R(A) := ~R(B) */
OP_NOT,/* A B R(A) := not R(B) */
OP_LEN,/* A B R(A) := length of R(B) */
OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */
OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
OP_FORLOOP,/* A sBx R(A)+=R(A+2);
if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */
OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */
OP_EXTRAARG,/* Ax extra (larger) argument for previous opcode */
OP_RAVI_NEW_IARRAY, /* A R(A) := array of int */
OP_RAVI_NEW_FARRAY, /* A R(A) := array of float */
OP_RAVI_LOADIZ, /* A R(A) := tointeger(0) */
OP_RAVI_LOADFZ, /* A R(A) := tonumber(0) */
OP_RAVI_UNMF, /* A B R(A) := -R(B) floating point */
OP_RAVI_UNMI, /* A B R(A) := -R(B) integer */
OP_RAVI_ADDFF, /* A B C R(A) := RK(B) + RK(C) */
OP_RAVI_ADDFI, /* A B C R(A) := RK(B) + RK(C) */
OP_RAVI_ADDII, /* A B C R(A) := RK(B) + RK(C) */
OP_RAVI_SUBFF, /* A B C R(A) := RK(B) - RK(C) */
OP_RAVI_SUBFI, /* A B C R(A) := RK(B) - RK(C) */
OP_RAVI_SUBIF, /* A B C R(A) := RK(B) - RK(C) */
OP_RAVI_SUBII, /* A B C R(A) := RK(B) - RK(C) */
OP_RAVI_MULFF, /* A B C R(A) := RK(B) * RK(C) */
OP_RAVI_MULFI, /* A B C R(A) := RK(B) * RK(C) */
OP_RAVI_MULII, /* A B C R(A) := RK(B) * RK(C) */
OP_RAVI_DIVFF, /* A B C R(A) := RK(B) / RK(C) */
OP_RAVI_DIVFI, /* A B C R(A) := RK(B) / RK(C) */
OP_RAVI_DIVIF, /* A B C R(A) := RK(B) / RK(C) */
OP_RAVI_DIVII, /* A B C R(A) := RK(B) / RK(C) */
OP_RAVI_TOINT, /* A R(A) := toint(R(A)) */
OP_RAVI_TOFLT, /* A R(A) := tofloat(R(A)) */
OP_RAVI_TOTAB, /* A R(A) := to_table(R(A)) */
OP_RAVI_TOSTRING, /* A R(A) := assert_string(R(A)) */
OP_RAVI_TOBOOLEAN, /* A R(A) := assert_string(R(A)) */
OP_RAVI_TOCLOSURE, /* A R(A) := assert_closure(R(A)) */
OP_RAVI_TOTYPE, /* A R(A) := assert_usertype(R(A)), where usertype has metatable in Lua registry */
OP_RAVI_TOINT_NIL, /* A R(A) := toint(R(A)) */
OP_RAVI_TOFLT_NIL, /* A R(A) := tofloat(R(A)) */
OP_RAVI_TOTAB_NIL, /* A R(A) := to_table(R(A)) */
OP_RAVI_TOSTRING_NIL, /* A R(A) := assert_string(R(A)) */
OP_RAVI_TOBOOLEAN_NIL, /* A R(A) := assert_string(R(A)) */
OP_RAVI_TOCLOSURE_NIL, /* A R(A) := assert_closure(R(A)) */
OP_RAVI_TOTYPE_NIL, /* A R(A) := assert_usertype(R(A)), where usertype has metatable in Lua registry */
OP_RAVI_TOIARRAY, /* A R(A) := to_arrayi(R(A)) */
OP_RAVI_TOFARRAY, /* A R(A) := to_arrayf(R(A)) */
OP_RAVI_MOVEI, /* A B R(A) := R(B), check R(B) is int */
OP_RAVI_MOVEF, /* A B R(A) := R(B), check R(B) is float */
OP_RAVI_MOVEIARRAY, /* A B R(A) := R(B), check R(B) is array of int */
OP_RAVI_MOVEFARRAY, /* A B R(A) := R(B), check R(B) is array of floats */
OP_RAVI_MOVETAB, /* A B R(A) := R(B), check R(B) is a table */
OP_RAVI_IARRAY_GET, /* A B C R(A) := R(B)[RK(C)] where R(B) is array of integers and RK(C) is int */
OP_RAVI_FARRAY_GET, /* A B C R(A) := R(B)[RK(C)] where R(B) is array of floats and RK(C) is int */
OP_RAVI_IARRAY_SET, /* A B C R(A)[RK(B)] := RK(C) where RK(B) is an int, R(A) is array of ints */
OP_RAVI_FARRAY_SET, /* A B C R(A)[RK(B)] := RK(C) where RK(B) is an int, R(A) is array of floats */
OP_RAVI_IARRAY_SETI, /* A B C R(A)[RK(B)] := RK(C) where RK(B) is an int, R(A) is array of ints, and RK(C) is an int */
OP_RAVI_FARRAY_SETF, /* A B C R(A)[RK(B)] := RK(C) where RK(B) is an int, R(A) is array of floats, and RK(C) is an float */
OP_RAVI_FORLOOP_IP, /* As FORLOOP, but with integer index and positive integer step */
OP_RAVI_FORLOOP_I1, /* As FORLOOP, but with integer index 1 and step 1 */
OP_RAVI_FORPREP_IP, /* As FORPREP, but with integer index and positive integer step */
OP_RAVI_FORPREP_I1, /* As FORPREP, but with integer index 1 and step 1 */
OP_RAVI_SETUPVALI, /* A B UpValue[B] := tointeger(R(A)) */
OP_RAVI_SETUPVALF, /* A B UpValue[B] := tonumber(R(A)) */
OP_RAVI_SETUPVAL_IARRAY, /* A B UpValue[B] := toarrayint(R(A)) */
OP_RAVI_SETUPVAL_FARRAY, /* A B UpValue[B] := toarrayflt(R(A)) */
OP_RAVI_SETUPVALT,/* A B UpValue[B] := to_table(R(A)) */
OP_RAVI_BAND_II,/* A B C R(A) := RK(B) & RK(C) */
OP_RAVI_BOR_II, /* A B C R(A) := RK(B) | RK(C) */
OP_RAVI_BXOR_II,/* A B C R(A) := RK(B) ~ RK(C) */
OP_RAVI_SHL_II, /* A B C R(A) := RK(B) << RK(C) */
OP_RAVI_SHR_II, /* A B C R(A) := RK(B) >> RK(C) */
OP_RAVI_BNOT_I, /* A B R(A) := ~R(B) */
OP_RAVI_EQ_II,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
OP_RAVI_EQ_FF,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */
OP_RAVI_LT_II,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
OP_RAVI_LT_FF,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */
OP_RAVI_LE_II,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
OP_RAVI_LE_FF,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */
/* Following op codes are specialised when it is known that indexing is being
done on a table and the key is known type */
OP_RAVI_TABLE_GETFIELD,/* A B C R(A) := R(B)[RK(C)], string key, R(B) references a table */
OP_RAVI_TABLE_SETFIELD,/* A B C R(A)[RK(B)] := RK(C), string key, R(A) references a table */
OP_RAVI_TABLE_SELF_SK, /* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)], string key, R(B) references a table */
/* Following opcodes are specialized for indexing where the
key is known to be string or integer but the variable may or may not be
a table */
OP_RAVI_GETI, /* A B C R(A) := R(B)[RK(C)], integer key */
OP_RAVI_SETI, /* A B C R(A)[RK(B)] := RK(C), integer key */
OP_RAVI_GETFIELD, /* A B C R(A) := R(B)[RK(C)], string key */
OP_RAVI_SELF_SK, /* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)], string key */
OP_RAVI_SETFIELD, /* A B C R(A)[RK(B)] := RK(C), string key */
OP_RAVI_GETTABUP_SK, /* A B C R(A) := UpValue[B][RK(C)], string key */
OP_RAVI_DEFER, /* A mark variable A "deferred" */
} OpCode;
#define NUM_OPCODES (cast(int, OP_RAVI_DEFER) + 1)
/*===========================================================================
Notes:
(*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
OP_SETLIST) may use 'top'.
(*) In OP_VARARG, if (B == 0) then use actual number of varargs and
set top (like in OP_CALL with C == 0).
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
(*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next
'instruction' is EXTRAARG(real C).
(*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
(*) For comparisons, A specifies what condition the test should accept
(true or false).
(*) All 'skips' (pc++) assume that next instruction is a jump.
===========================================================================*/
/*
** masks for instruction properties. The format is:
** bits 0-1: op mode
** bits 2-3: C arg mode
** bits 4-5: B arg mode
** bit 6: instruction set register A
** bit 7: operator is a test (next instruction must be a jump)
*/
enum OpArgMask {
OpArgN, /* argument is not used */
OpArgU, /* argument is used */
OpArgR, /* argument is a register or a jump offset */
OpArgK /* argument is a constant or register/constant */
};
LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3))
#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
#define testAMode(m) (luaP_opmodes[m] & (1 << 6))
#define testTMode(m) (luaP_opmodes[m] & (1 << 7))
LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
/* number of list items to accumulate before a SETLIST instruction */
#define LFIELDS_PER_FLUSH 50
/* Ravi extension - prints the given instruction to the supplied buffer */
LUAI_FUNC const char* raviP_instruction_to_str(char *buf, size_t n, Instruction i);
#endif