/* ** $Id: lopcodes.h,v 1.149.1.1 2017/04/19 17:20:42 roberto Exp $ ** Opcodes for Lua virtual machine ** See Copyright Notice in lua.h */ #ifndef lopcodes_h #define lopcodes_h #include "llimits.h" /*=========================================================================== We assume that instructions are unsigned numbers. All instructions have an opcode in the first 8 bits. Instructions can have the following fields: 'A' : 8 bits (7 bits used) 'B' : 8 bits 'C' : 8 bits 'Ax' : 24 bits ('A', 'B', and 'C' together) 'Bx' : 16 bits ('B' and 'C' together) 'sBx' : signed Bx Above is based on LuaJIT scheme but unlike LuaJIT A is actually represented in 7 bits. A signed argument is represented in excess K; that is, the number value is the unsigned value minus K. K is exactly the maximum value for that argument (so that -max is represented by 0, and +max is represented by 2*max), which is half the maximum for the corresponding unsigned argument. ===========================================================================*/ enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ #include "ravi_arch.h" /* The bytecode layout here uses LuaJIT inspired format. +---+---+---+----+ | B | C | A | Op | +---+---+---+----+ | Bx | A | Op | +-------+---+----+ | Ax | Op | +-----------+----+ */ #define MAXARG_A 0x7f #define MAXARG_B 0xff #define MAXARG_C 0xff #define MAXARG_Bx 0xffff #define MAXARG_Ax 0xffffff #define GET_OPCODE(i) cast(OpCode, ((i)&0xff)) #define GETARG_A(i) cast(int, ((i)>>8)&0x7f) #define GETARG_B(i) cast(int, (i)>>24) #define GETARG_C(i) cast(int, ((i)>>16)&0xff) #define GETARG_Bx(i) cast(int, (i)>>16) #define GETARG_Ax(i) cast(int, (i)>>8) #define GETARG_sBx(i) (((int)GETARG_Bx(i))-MAXARG_sBx) #define MAXARG_sBx 0x8000 #define setbc_byte(p, x, ofs) \ ((lu_byte *)(&(p)))[RAVI_ENDIAN_SELECT(ofs, 3-ofs)] = ((lu_byte)cast(Instruction, x)) #define SET_OPCODE(p, x) setbc_byte(p, (x), 0) #define SETARG_A(p, x) setbc_byte(p, ((x)&0x7f), 1) #define SETARG_B(p, x) setbc_byte(p, (x), 3) #define SETARG_C(p, x) setbc_byte(p, (x), 2) #define SETARG_Bx(p, x) \ ((unsigned short *)(&(p)))[RAVI_ENDIAN_SELECT(1, 0)] = (unsigned short)(cast(Instruction, x)) #define SETARG_sBx(p, x) SETARG_Bx(p, cast(unsigned int, cast(Instruction, x)+MAXARG_sBx)) #define SETARG_Ax(p, x) p = (cast(Instruction, p)&0xff | (cast(Instruction, x)<<8)) #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)) \ | (cast(Instruction, a)<<8) \ | (cast(Instruction, b)<<24) \ | (cast(Instruction, c)<<16)) #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)) \ | (cast(Instruction, a)<<8) \ | (cast(Instruction, bc)<<16)) #define CREATE_Ax(o,a) ((cast(Instruction, o)) \ | (cast(Instruction, a)<<8)) /* this bit 1 means constant (0 means register) */ #define BITRK 0x80 /* test whether value is a constant */ #define ISK(x) ((x) & BITRK) /* gets the index of the constant */ #define INDEXK(r) ((int)(r) & ~BITRK) #if !defined(MAXINDEXRK) /* (for debugging only) */ #define MAXINDEXRK (BITRK - 1) #endif /* code a constant index as a RK value */ #define RKASK(x) ((x) | BITRK) /* ** invalid register that fits in 8 bits */ #define NO_REG MAXARG_A /* ** R(x) - register ** Kst(x) - constant (in constant table) ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) */ /* ** grep "ORDER OP" if you change these enums */ typedef enum { /*---------------------------------------------------------------------- name args description ------------------------------------------------------------------------*/ OP_MOVE,/* A B R(A) := R(B) */ OP_LOADK,/* A Bx R(A) := Kst(Bx) */ OP_LOADKX,/* A R(A) := Kst(extra arg) */ OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ OP_GETUPVAL,/* A B R(A) := UpValue[B] */ OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ OP_SETUPVAL,/* A B UpValue[B] := R(A) */ OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */ OP_BAND,/* A B C R(A) := RK(B) & RK(C) */ OP_BOR,/* A B C R(A) := RK(B) | RK(C) */ OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */ OP_SHL,/* A B C R(A) := RK(B) << RK(C) */ OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */ OP_UNM,/* A B R(A) := -R(B) */ OP_BNOT,/* A B R(A) := ~R(B) */ OP_NOT,/* A B R(A) := not R(B) */ OP_LEN,/* A B R(A) := length of R(B) */ OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */ OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) > RK(C) */ OP_RAVI_BNOT_I, /* A B R(A) := ~R(B) */ OP_RAVI_EQ_II,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ OP_RAVI_EQ_FF,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ OP_RAVI_LT_II,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ OP_RAVI_LT_FF,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ OP_RAVI_LE_II,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ OP_RAVI_LE_FF,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ /* Following op codes are specialised when it is known that indexing is being done on a table and the key is known type */ OP_RAVI_TABLE_GETFIELD,/* A B C R(A) := R(B)[RK(C)], string key, R(B) references a table */ OP_RAVI_TABLE_SETFIELD,/* A B C R(A)[RK(B)] := RK(C), string key, R(A) references a table */ OP_RAVI_TABLE_SELF_SK, /* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)], string key, R(B) references a table */ /* Following opcodes are specialized for indexing where the key is known to be string or integer but the variable may or may not be a table */ OP_RAVI_GETI, /* A B C R(A) := R(B)[RK(C)], integer key */ OP_RAVI_SETI, /* A B C R(A)[RK(B)] := RK(C), integer key */ OP_RAVI_GETFIELD, /* A B C R(A) := R(B)[RK(C)], string key */ OP_RAVI_SELF_SK, /* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)], string key */ OP_RAVI_SETFIELD, /* A B C R(A)[RK(B)] := RK(C), string key */ OP_RAVI_GETTABUP_SK, /* A B C R(A) := UpValue[B][RK(C)], string key */ OP_RAVI_DEFER, /* A mark variable A "deferred" */ } OpCode; #define NUM_OPCODES (cast(int, OP_RAVI_DEFER) + 1) /*=========================================================================== Notes: (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, OP_SETLIST) may use 'top'. (*) In OP_VARARG, if (B == 0) then use actual number of varargs and set top (like in OP_CALL with C == 0). (*) In OP_RETURN, if (B == 0) then return up to 'top'. (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next 'instruction' is EXTRAARG(real C). (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. (*) For comparisons, A specifies what condition the test should accept (true or false). (*) All 'skips' (pc++) assume that next instruction is a jump. ===========================================================================*/ /* ** masks for instruction properties. The format is: ** bits 0-1: op mode ** bits 2-3: C arg mode ** bits 4-5: B arg mode ** bit 6: instruction set register A ** bit 7: operator is a test (next instruction must be a jump) */ enum OpArgMask { OpArgN, /* argument is not used */ OpArgU, /* argument is used */ OpArgR, /* argument is a register or a jump offset */ OpArgK /* argument is a constant or register/constant */ }; LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ /* number of list items to accumulate before a SETLIST instruction */ #define LFIELDS_PER_FLUSH 50 /* Ravi extension - prints the given instruction to the supplied buffer */ LUAI_FUNC const char* raviP_instruction_to_str(char *buf, size_t n, Instruction i); #endif