Initial commit

This commit is contained in:
Andrzej Wójcik 2020-04-10 17:21:25 +02:00
commit d23d5af0d7
No known key found for this signature in database
GPG key ID: 2BE28BB9C1B5FF02
172 changed files with 35749 additions and 0 deletions

7
.gitignore vendored Normal file
View file

@ -0,0 +1,7 @@
.DS_Store
/.build
/.swiftpm
/Packages
/*.xcodeproj
xcuserdata/

674
LICENSE Normal file
View file

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

38
Package.swift Normal file
View file

@ -0,0 +1,38 @@
// swift-tools-version:5.2
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "libsignal",
platforms: [.iOS(.v11), .macOS(.v10_12)],
products: [
// Products define the executables and libraries produced by a package, and make them visible to other packages.
.library(
name: "libsignal",
targets: ["libsignal"]),
],
dependencies: [
// Dependencies declare other packages that this package depends on.
// .package(url: /* package url */, from: "1.0.0"),
],
targets: [
// Targets are the basic building blocks of a package. A target can define a module or a test suite.
// Targets can depend on other targets in this package, and on products in packages which this package depends on.
.target(
name: "libsignal",
dependencies: [],
publicHeadersPath: "includes",
cSettings: [
.headerSearchPath("includes"),
.headerSearchPath("curve25519"),
.headerSearchPath("curve25519/ed25519"),
.headerSearchPath("curve25519/ed25519/additions"),
.headerSearchPath("curve25519/ed25519/additions/generalized"),
.headerSearchPath("curve25519/ed25519/nacl_includes"),
.headerSearchPath("curve25519/ed25519/nacl_sha512"),
.headerSearchPath("curve25519/ed25519/tests"),
]
)
]
)

7
README.md Normal file
View file

@ -0,0 +1,7 @@
<h1 align="center">
libsignal
</h1>
# What it is
This repository contains a modified version of [libsignal](https://github.com/signalapp/libsignal-protocol-c) library wrapped in Swift package for easier usage in Swift-based projects.

13
Sources/libsignal/File.h Normal file
View file

@ -0,0 +1,13 @@
//
// File.h
//
//
// Created by Andrzej Wójcik on 10/04/2020.
//
#ifndef File_h
#define File_h
#include <stdio.h>
#endif /* File_h */

View file

@ -0,0 +1,210 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: FingerprintProtocol.proto */
/* Do not generate deprecated warnings for self */
#ifndef PROTOBUF_C__NO_DEPRECATED
#define PROTOBUF_C__NO_DEPRECATED
#endif
#include "FingerprintProtocol.pb-c.h"
void textsecure__logical_fingerprint__init
(Textsecure__LogicalFingerprint *message)
{
static Textsecure__LogicalFingerprint init_value = TEXTSECURE__LOGICAL_FINGERPRINT__INIT;
*message = init_value;
}
size_t textsecure__logical_fingerprint__get_packed_size
(const Textsecure__LogicalFingerprint *message)
{
assert(message->base.descriptor == &textsecure__logical_fingerprint__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t textsecure__logical_fingerprint__pack
(const Textsecure__LogicalFingerprint *message,
uint8_t *out)
{
assert(message->base.descriptor == &textsecure__logical_fingerprint__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t textsecure__logical_fingerprint__pack_to_buffer
(const Textsecure__LogicalFingerprint *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &textsecure__logical_fingerprint__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Textsecure__LogicalFingerprint *
textsecure__logical_fingerprint__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Textsecure__LogicalFingerprint *)
protobuf_c_message_unpack (&textsecure__logical_fingerprint__descriptor,
allocator, len, data);
}
void textsecure__logical_fingerprint__free_unpacked
(Textsecure__LogicalFingerprint *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &textsecure__logical_fingerprint__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void textsecure__combined_fingerprints__init
(Textsecure__CombinedFingerprints *message)
{
static Textsecure__CombinedFingerprints init_value = TEXTSECURE__COMBINED_FINGERPRINTS__INIT;
*message = init_value;
}
size_t textsecure__combined_fingerprints__get_packed_size
(const Textsecure__CombinedFingerprints *message)
{
assert(message->base.descriptor == &textsecure__combined_fingerprints__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t textsecure__combined_fingerprints__pack
(const Textsecure__CombinedFingerprints *message,
uint8_t *out)
{
assert(message->base.descriptor == &textsecure__combined_fingerprints__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t textsecure__combined_fingerprints__pack_to_buffer
(const Textsecure__CombinedFingerprints *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &textsecure__combined_fingerprints__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Textsecure__CombinedFingerprints *
textsecure__combined_fingerprints__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Textsecure__CombinedFingerprints *)
protobuf_c_message_unpack (&textsecure__combined_fingerprints__descriptor,
allocator, len, data);
}
void textsecure__combined_fingerprints__free_unpacked
(Textsecure__CombinedFingerprints *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &textsecure__combined_fingerprints__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
static const ProtobufCFieldDescriptor textsecure__logical_fingerprint__field_descriptors[2] =
{
{
"content",
1,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__LogicalFingerprint, has_content),
offsetof(Textsecure__LogicalFingerprint, content),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"identifier",
2,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__LogicalFingerprint, has_identifier),
offsetof(Textsecure__LogicalFingerprint, identifier),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned textsecure__logical_fingerprint__field_indices_by_name[] = {
0, /* field[0] = content */
1, /* field[1] = identifier */
};
static const ProtobufCIntRange textsecure__logical_fingerprint__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 2 }
};
const ProtobufCMessageDescriptor textsecure__logical_fingerprint__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"textsecure.LogicalFingerprint",
"LogicalFingerprint",
"Textsecure__LogicalFingerprint",
"textsecure",
sizeof(Textsecure__LogicalFingerprint),
2,
textsecure__logical_fingerprint__field_descriptors,
textsecure__logical_fingerprint__field_indices_by_name,
1, textsecure__logical_fingerprint__number_ranges,
(ProtobufCMessageInit) textsecure__logical_fingerprint__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor textsecure__combined_fingerprints__field_descriptors[3] =
{
{
"version",
1,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__CombinedFingerprints, has_version),
offsetof(Textsecure__CombinedFingerprints, version),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"localFingerprint",
2,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_MESSAGE,
0, /* quantifier_offset */
offsetof(Textsecure__CombinedFingerprints, localfingerprint),
&textsecure__logical_fingerprint__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"remoteFingerprint",
3,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_MESSAGE,
0, /* quantifier_offset */
offsetof(Textsecure__CombinedFingerprints, remotefingerprint),
&textsecure__logical_fingerprint__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned textsecure__combined_fingerprints__field_indices_by_name[] = {
1, /* field[1] = localFingerprint */
2, /* field[2] = remoteFingerprint */
0, /* field[0] = version */
};
static const ProtobufCIntRange textsecure__combined_fingerprints__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 3 }
};
const ProtobufCMessageDescriptor textsecure__combined_fingerprints__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"textsecure.CombinedFingerprints",
"CombinedFingerprints",
"Textsecure__CombinedFingerprints",
"textsecure",
sizeof(Textsecure__CombinedFingerprints),
3,
textsecure__combined_fingerprints__field_descriptors,
textsecure__combined_fingerprints__field_indices_by_name,
1, textsecure__combined_fingerprints__number_ranges,
(ProtobufCMessageInit) textsecure__combined_fingerprints__init,
NULL,NULL,NULL /* reserved[123] */
};

View file

@ -0,0 +1,114 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: FingerprintProtocol.proto */
#ifndef PROTOBUF_C_FingerprintProtocol_2eproto__INCLUDED
#define PROTOBUF_C_FingerprintProtocol_2eproto__INCLUDED
#include "protobuf-c/protobuf-c.h"
PROTOBUF_C__BEGIN_DECLS
#if PROTOBUF_C_VERSION_NUMBER < 1000000
# error This file was generated by a newer version of protoc-c which is incompatible with your libprotobuf-c headers. Please update your headers.
#elif 1002001 < PROTOBUF_C_MIN_COMPILER_VERSION
# error This file was generated by an older version of protoc-c which is incompatible with your libprotobuf-c headers. Please regenerate this file with a newer version of protoc-c.
#endif
typedef struct _Textsecure__LogicalFingerprint Textsecure__LogicalFingerprint;
typedef struct _Textsecure__CombinedFingerprints Textsecure__CombinedFingerprints;
/* --- enums --- */
/* --- messages --- */
struct _Textsecure__LogicalFingerprint
{
ProtobufCMessage base;
protobuf_c_boolean has_content;
ProtobufCBinaryData content;
/*
* Version 0
*/
protobuf_c_boolean has_identifier;
ProtobufCBinaryData identifier;
};
#define TEXTSECURE__LOGICAL_FINGERPRINT__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__logical_fingerprint__descriptor) \
, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__CombinedFingerprints
{
ProtobufCMessage base;
protobuf_c_boolean has_version;
uint32_t version;
Textsecure__LogicalFingerprint *localfingerprint;
Textsecure__LogicalFingerprint *remotefingerprint;
};
#define TEXTSECURE__COMBINED_FINGERPRINTS__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__combined_fingerprints__descriptor) \
, 0,0, NULL, NULL }
/* Textsecure__LogicalFingerprint methods */
void textsecure__logical_fingerprint__init
(Textsecure__LogicalFingerprint *message);
size_t textsecure__logical_fingerprint__get_packed_size
(const Textsecure__LogicalFingerprint *message);
size_t textsecure__logical_fingerprint__pack
(const Textsecure__LogicalFingerprint *message,
uint8_t *out);
size_t textsecure__logical_fingerprint__pack_to_buffer
(const Textsecure__LogicalFingerprint *message,
ProtobufCBuffer *buffer);
Textsecure__LogicalFingerprint *
textsecure__logical_fingerprint__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__logical_fingerprint__free_unpacked
(Textsecure__LogicalFingerprint *message,
ProtobufCAllocator *allocator);
/* Textsecure__CombinedFingerprints methods */
void textsecure__combined_fingerprints__init
(Textsecure__CombinedFingerprints *message);
size_t textsecure__combined_fingerprints__get_packed_size
(const Textsecure__CombinedFingerprints *message);
size_t textsecure__combined_fingerprints__pack
(const Textsecure__CombinedFingerprints *message,
uint8_t *out);
size_t textsecure__combined_fingerprints__pack_to_buffer
(const Textsecure__CombinedFingerprints *message,
ProtobufCBuffer *buffer);
Textsecure__CombinedFingerprints *
textsecure__combined_fingerprints__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__combined_fingerprints__free_unpacked
(Textsecure__CombinedFingerprints *message,
ProtobufCAllocator *allocator);
/* --- per-message closures --- */
typedef void (*Textsecure__LogicalFingerprint_Closure)
(const Textsecure__LogicalFingerprint *message,
void *closure_data);
typedef void (*Textsecure__CombinedFingerprints_Closure)
(const Textsecure__CombinedFingerprints *message,
void *closure_data);
/* --- services --- */
/* --- descriptors --- */
extern const ProtobufCMessageDescriptor textsecure__logical_fingerprint__descriptor;
extern const ProtobufCMessageDescriptor textsecure__combined_fingerprints__descriptor;
PROTOBUF_C__END_DECLS
#endif /* PROTOBUF_C_FingerprintProtocol_2eproto__INCLUDED */

621
Sources/libsignal/LICENSE Executable file
View file

@ -0,0 +1,621 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,509 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: LocalStorageProtocol.proto */
#ifndef PROTOBUF_C_LocalStorageProtocol_2eproto__INCLUDED
#define PROTOBUF_C_LocalStorageProtocol_2eproto__INCLUDED
#include "protobuf-c/protobuf-c.h"
PROTOBUF_C__BEGIN_DECLS
#if PROTOBUF_C_VERSION_NUMBER < 1000000
# error This file was generated by a newer version of protoc-c which is incompatible with your libprotobuf-c headers. Please update your headers.
#elif 1002001 < PROTOBUF_C_MIN_COMPILER_VERSION
# error This file was generated by an older version of protoc-c which is incompatible with your libprotobuf-c headers. Please regenerate this file with a newer version of protoc-c.
#endif
typedef struct _Textsecure__SessionStructure Textsecure__SessionStructure;
typedef struct _Textsecure__SessionStructure__Chain Textsecure__SessionStructure__Chain;
typedef struct _Textsecure__SessionStructure__Chain__ChainKey Textsecure__SessionStructure__Chain__ChainKey;
typedef struct _Textsecure__SessionStructure__Chain__MessageKey Textsecure__SessionStructure__Chain__MessageKey;
typedef struct _Textsecure__SessionStructure__PendingKeyExchange Textsecure__SessionStructure__PendingKeyExchange;
typedef struct _Textsecure__SessionStructure__PendingPreKey Textsecure__SessionStructure__PendingPreKey;
typedef struct _Textsecure__RecordStructure Textsecure__RecordStructure;
typedef struct _Textsecure__PreKeyRecordStructure Textsecure__PreKeyRecordStructure;
typedef struct _Textsecure__SignedPreKeyRecordStructure Textsecure__SignedPreKeyRecordStructure;
typedef struct _Textsecure__IdentityKeyPairStructure Textsecure__IdentityKeyPairStructure;
typedef struct _Textsecure__SenderKeyStateStructure Textsecure__SenderKeyStateStructure;
typedef struct _Textsecure__SenderKeyStateStructure__SenderChainKey Textsecure__SenderKeyStateStructure__SenderChainKey;
typedef struct _Textsecure__SenderKeyStateStructure__SenderMessageKey Textsecure__SenderKeyStateStructure__SenderMessageKey;
typedef struct _Textsecure__SenderKeyStateStructure__SenderSigningKey Textsecure__SenderKeyStateStructure__SenderSigningKey;
typedef struct _Textsecure__SenderKeyRecordStructure Textsecure__SenderKeyRecordStructure;
/* --- enums --- */
/* --- messages --- */
struct _Textsecure__SessionStructure__Chain__ChainKey
{
ProtobufCMessage base;
protobuf_c_boolean has_index;
uint32_t index;
protobuf_c_boolean has_key;
ProtobufCBinaryData key;
};
#define TEXTSECURE__SESSION_STRUCTURE__CHAIN__CHAIN_KEY__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__session_structure__chain__chain_key__descriptor) \
, 0,0, 0,{0,NULL} }
struct _Textsecure__SessionStructure__Chain__MessageKey
{
ProtobufCMessage base;
protobuf_c_boolean has_index;
uint32_t index;
protobuf_c_boolean has_cipherkey;
ProtobufCBinaryData cipherkey;
protobuf_c_boolean has_mackey;
ProtobufCBinaryData mackey;
protobuf_c_boolean has_iv;
ProtobufCBinaryData iv;
};
#define TEXTSECURE__SESSION_STRUCTURE__CHAIN__MESSAGE_KEY__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__session_structure__chain__message_key__descriptor) \
, 0,0, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__SessionStructure__Chain
{
ProtobufCMessage base;
protobuf_c_boolean has_senderratchetkey;
ProtobufCBinaryData senderratchetkey;
protobuf_c_boolean has_senderratchetkeyprivate;
ProtobufCBinaryData senderratchetkeyprivate;
Textsecure__SessionStructure__Chain__ChainKey *chainkey;
size_t n_messagekeys;
Textsecure__SessionStructure__Chain__MessageKey **messagekeys;
};
#define TEXTSECURE__SESSION_STRUCTURE__CHAIN__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__session_structure__chain__descriptor) \
, 0,{0,NULL}, 0,{0,NULL}, NULL, 0,NULL }
struct _Textsecure__SessionStructure__PendingKeyExchange
{
ProtobufCMessage base;
protobuf_c_boolean has_sequence;
uint32_t sequence;
protobuf_c_boolean has_localbasekey;
ProtobufCBinaryData localbasekey;
protobuf_c_boolean has_localbasekeyprivate;
ProtobufCBinaryData localbasekeyprivate;
protobuf_c_boolean has_localratchetkey;
ProtobufCBinaryData localratchetkey;
protobuf_c_boolean has_localratchetkeyprivate;
ProtobufCBinaryData localratchetkeyprivate;
protobuf_c_boolean has_localidentitykey;
ProtobufCBinaryData localidentitykey;
protobuf_c_boolean has_localidentitykeyprivate;
ProtobufCBinaryData localidentitykeyprivate;
};
#define TEXTSECURE__SESSION_STRUCTURE__PENDING_KEY_EXCHANGE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__session_structure__pending_key_exchange__descriptor) \
, 0,0, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__SessionStructure__PendingPreKey
{
ProtobufCMessage base;
protobuf_c_boolean has_prekeyid;
uint32_t prekeyid;
protobuf_c_boolean has_signedprekeyid;
int32_t signedprekeyid;
protobuf_c_boolean has_basekey;
ProtobufCBinaryData basekey;
};
#define TEXTSECURE__SESSION_STRUCTURE__PENDING_PRE_KEY__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__session_structure__pending_pre_key__descriptor) \
, 0,0, 0,0, 0,{0,NULL} }
struct _Textsecure__SessionStructure
{
ProtobufCMessage base;
protobuf_c_boolean has_sessionversion;
uint32_t sessionversion;
protobuf_c_boolean has_localidentitypublic;
ProtobufCBinaryData localidentitypublic;
protobuf_c_boolean has_remoteidentitypublic;
ProtobufCBinaryData remoteidentitypublic;
protobuf_c_boolean has_rootkey;
ProtobufCBinaryData rootkey;
protobuf_c_boolean has_previouscounter;
uint32_t previouscounter;
Textsecure__SessionStructure__Chain *senderchain;
size_t n_receiverchains;
Textsecure__SessionStructure__Chain **receiverchains;
Textsecure__SessionStructure__PendingKeyExchange *pendingkeyexchange;
Textsecure__SessionStructure__PendingPreKey *pendingprekey;
protobuf_c_boolean has_remoteregistrationid;
uint32_t remoteregistrationid;
protobuf_c_boolean has_localregistrationid;
uint32_t localregistrationid;
protobuf_c_boolean has_needsrefresh;
protobuf_c_boolean needsrefresh;
protobuf_c_boolean has_alicebasekey;
ProtobufCBinaryData alicebasekey;
};
#define TEXTSECURE__SESSION_STRUCTURE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__session_structure__descriptor) \
, 0,0, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL}, 0,0, NULL, 0,NULL, NULL, NULL, 0,0, 0,0, 0,0, 0,{0,NULL} }
struct _Textsecure__RecordStructure
{
ProtobufCMessage base;
Textsecure__SessionStructure *currentsession;
size_t n_previoussessions;
Textsecure__SessionStructure **previoussessions;
};
#define TEXTSECURE__RECORD_STRUCTURE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__record_structure__descriptor) \
, NULL, 0,NULL }
struct _Textsecure__PreKeyRecordStructure
{
ProtobufCMessage base;
protobuf_c_boolean has_id;
uint32_t id;
protobuf_c_boolean has_publickey;
ProtobufCBinaryData publickey;
protobuf_c_boolean has_privatekey;
ProtobufCBinaryData privatekey;
};
#define TEXTSECURE__PRE_KEY_RECORD_STRUCTURE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__pre_key_record_structure__descriptor) \
, 0,0, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__SignedPreKeyRecordStructure
{
ProtobufCMessage base;
protobuf_c_boolean has_id;
uint32_t id;
protobuf_c_boolean has_publickey;
ProtobufCBinaryData publickey;
protobuf_c_boolean has_privatekey;
ProtobufCBinaryData privatekey;
protobuf_c_boolean has_signature;
ProtobufCBinaryData signature;
protobuf_c_boolean has_timestamp;
uint64_t timestamp;
};
#define TEXTSECURE__SIGNED_PRE_KEY_RECORD_STRUCTURE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__signed_pre_key_record_structure__descriptor) \
, 0,0, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL}, 0,0 }
struct _Textsecure__IdentityKeyPairStructure
{
ProtobufCMessage base;
protobuf_c_boolean has_publickey;
ProtobufCBinaryData publickey;
protobuf_c_boolean has_privatekey;
ProtobufCBinaryData privatekey;
};
#define TEXTSECURE__IDENTITY_KEY_PAIR_STRUCTURE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__identity_key_pair_structure__descriptor) \
, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__SenderKeyStateStructure__SenderChainKey
{
ProtobufCMessage base;
protobuf_c_boolean has_iteration;
uint32_t iteration;
protobuf_c_boolean has_seed;
ProtobufCBinaryData seed;
};
#define TEXTSECURE__SENDER_KEY_STATE_STRUCTURE__SENDER_CHAIN_KEY__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__sender_key_state_structure__sender_chain_key__descriptor) \
, 0,0, 0,{0,NULL} }
struct _Textsecure__SenderKeyStateStructure__SenderMessageKey
{
ProtobufCMessage base;
protobuf_c_boolean has_iteration;
uint32_t iteration;
protobuf_c_boolean has_seed;
ProtobufCBinaryData seed;
};
#define TEXTSECURE__SENDER_KEY_STATE_STRUCTURE__SENDER_MESSAGE_KEY__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__sender_key_state_structure__sender_message_key__descriptor) \
, 0,0, 0,{0,NULL} }
struct _Textsecure__SenderKeyStateStructure__SenderSigningKey
{
ProtobufCMessage base;
protobuf_c_boolean has_public_;
ProtobufCBinaryData public_;
protobuf_c_boolean has_private_;
ProtobufCBinaryData private_;
};
#define TEXTSECURE__SENDER_KEY_STATE_STRUCTURE__SENDER_SIGNING_KEY__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__sender_key_state_structure__sender_signing_key__descriptor) \
, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__SenderKeyStateStructure
{
ProtobufCMessage base;
protobuf_c_boolean has_senderkeyid;
uint32_t senderkeyid;
Textsecure__SenderKeyStateStructure__SenderChainKey *senderchainkey;
Textsecure__SenderKeyStateStructure__SenderSigningKey *sendersigningkey;
size_t n_sendermessagekeys;
Textsecure__SenderKeyStateStructure__SenderMessageKey **sendermessagekeys;
};
#define TEXTSECURE__SENDER_KEY_STATE_STRUCTURE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__sender_key_state_structure__descriptor) \
, 0,0, NULL, NULL, 0,NULL }
struct _Textsecure__SenderKeyRecordStructure
{
ProtobufCMessage base;
size_t n_senderkeystates;
Textsecure__SenderKeyStateStructure **senderkeystates;
};
#define TEXTSECURE__SENDER_KEY_RECORD_STRUCTURE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__sender_key_record_structure__descriptor) \
, 0,NULL }
/* Textsecure__SessionStructure__Chain__ChainKey methods */
void textsecure__session_structure__chain__chain_key__init
(Textsecure__SessionStructure__Chain__ChainKey *message);
/* Textsecure__SessionStructure__Chain__MessageKey methods */
void textsecure__session_structure__chain__message_key__init
(Textsecure__SessionStructure__Chain__MessageKey *message);
/* Textsecure__SessionStructure__Chain methods */
void textsecure__session_structure__chain__init
(Textsecure__SessionStructure__Chain *message);
/* Textsecure__SessionStructure__PendingKeyExchange methods */
void textsecure__session_structure__pending_key_exchange__init
(Textsecure__SessionStructure__PendingKeyExchange *message);
/* Textsecure__SessionStructure__PendingPreKey methods */
void textsecure__session_structure__pending_pre_key__init
(Textsecure__SessionStructure__PendingPreKey *message);
/* Textsecure__SessionStructure methods */
void textsecure__session_structure__init
(Textsecure__SessionStructure *message);
size_t textsecure__session_structure__get_packed_size
(const Textsecure__SessionStructure *message);
size_t textsecure__session_structure__pack
(const Textsecure__SessionStructure *message,
uint8_t *out);
size_t textsecure__session_structure__pack_to_buffer
(const Textsecure__SessionStructure *message,
ProtobufCBuffer *buffer);
Textsecure__SessionStructure *
textsecure__session_structure__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__session_structure__free_unpacked
(Textsecure__SessionStructure *message,
ProtobufCAllocator *allocator);
/* Textsecure__RecordStructure methods */
void textsecure__record_structure__init
(Textsecure__RecordStructure *message);
size_t textsecure__record_structure__get_packed_size
(const Textsecure__RecordStructure *message);
size_t textsecure__record_structure__pack
(const Textsecure__RecordStructure *message,
uint8_t *out);
size_t textsecure__record_structure__pack_to_buffer
(const Textsecure__RecordStructure *message,
ProtobufCBuffer *buffer);
Textsecure__RecordStructure *
textsecure__record_structure__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__record_structure__free_unpacked
(Textsecure__RecordStructure *message,
ProtobufCAllocator *allocator);
/* Textsecure__PreKeyRecordStructure methods */
void textsecure__pre_key_record_structure__init
(Textsecure__PreKeyRecordStructure *message);
size_t textsecure__pre_key_record_structure__get_packed_size
(const Textsecure__PreKeyRecordStructure *message);
size_t textsecure__pre_key_record_structure__pack
(const Textsecure__PreKeyRecordStructure *message,
uint8_t *out);
size_t textsecure__pre_key_record_structure__pack_to_buffer
(const Textsecure__PreKeyRecordStructure *message,
ProtobufCBuffer *buffer);
Textsecure__PreKeyRecordStructure *
textsecure__pre_key_record_structure__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__pre_key_record_structure__free_unpacked
(Textsecure__PreKeyRecordStructure *message,
ProtobufCAllocator *allocator);
/* Textsecure__SignedPreKeyRecordStructure methods */
void textsecure__signed_pre_key_record_structure__init
(Textsecure__SignedPreKeyRecordStructure *message);
size_t textsecure__signed_pre_key_record_structure__get_packed_size
(const Textsecure__SignedPreKeyRecordStructure *message);
size_t textsecure__signed_pre_key_record_structure__pack
(const Textsecure__SignedPreKeyRecordStructure *message,
uint8_t *out);
size_t textsecure__signed_pre_key_record_structure__pack_to_buffer
(const Textsecure__SignedPreKeyRecordStructure *message,
ProtobufCBuffer *buffer);
Textsecure__SignedPreKeyRecordStructure *
textsecure__signed_pre_key_record_structure__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__signed_pre_key_record_structure__free_unpacked
(Textsecure__SignedPreKeyRecordStructure *message,
ProtobufCAllocator *allocator);
/* Textsecure__IdentityKeyPairStructure methods */
void textsecure__identity_key_pair_structure__init
(Textsecure__IdentityKeyPairStructure *message);
size_t textsecure__identity_key_pair_structure__get_packed_size
(const Textsecure__IdentityKeyPairStructure *message);
size_t textsecure__identity_key_pair_structure__pack
(const Textsecure__IdentityKeyPairStructure *message,
uint8_t *out);
size_t textsecure__identity_key_pair_structure__pack_to_buffer
(const Textsecure__IdentityKeyPairStructure *message,
ProtobufCBuffer *buffer);
Textsecure__IdentityKeyPairStructure *
textsecure__identity_key_pair_structure__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__identity_key_pair_structure__free_unpacked
(Textsecure__IdentityKeyPairStructure *message,
ProtobufCAllocator *allocator);
/* Textsecure__SenderKeyStateStructure__SenderChainKey methods */
void textsecure__sender_key_state_structure__sender_chain_key__init
(Textsecure__SenderKeyStateStructure__SenderChainKey *message);
/* Textsecure__SenderKeyStateStructure__SenderMessageKey methods */
void textsecure__sender_key_state_structure__sender_message_key__init
(Textsecure__SenderKeyStateStructure__SenderMessageKey *message);
/* Textsecure__SenderKeyStateStructure__SenderSigningKey methods */
void textsecure__sender_key_state_structure__sender_signing_key__init
(Textsecure__SenderKeyStateStructure__SenderSigningKey *message);
/* Textsecure__SenderKeyStateStructure methods */
void textsecure__sender_key_state_structure__init
(Textsecure__SenderKeyStateStructure *message);
size_t textsecure__sender_key_state_structure__get_packed_size
(const Textsecure__SenderKeyStateStructure *message);
size_t textsecure__sender_key_state_structure__pack
(const Textsecure__SenderKeyStateStructure *message,
uint8_t *out);
size_t textsecure__sender_key_state_structure__pack_to_buffer
(const Textsecure__SenderKeyStateStructure *message,
ProtobufCBuffer *buffer);
Textsecure__SenderKeyStateStructure *
textsecure__sender_key_state_structure__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__sender_key_state_structure__free_unpacked
(Textsecure__SenderKeyStateStructure *message,
ProtobufCAllocator *allocator);
/* Textsecure__SenderKeyRecordStructure methods */
void textsecure__sender_key_record_structure__init
(Textsecure__SenderKeyRecordStructure *message);
size_t textsecure__sender_key_record_structure__get_packed_size
(const Textsecure__SenderKeyRecordStructure *message);
size_t textsecure__sender_key_record_structure__pack
(const Textsecure__SenderKeyRecordStructure *message,
uint8_t *out);
size_t textsecure__sender_key_record_structure__pack_to_buffer
(const Textsecure__SenderKeyRecordStructure *message,
ProtobufCBuffer *buffer);
Textsecure__SenderKeyRecordStructure *
textsecure__sender_key_record_structure__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__sender_key_record_structure__free_unpacked
(Textsecure__SenderKeyRecordStructure *message,
ProtobufCAllocator *allocator);
/* --- per-message closures --- */
typedef void (*Textsecure__SessionStructure__Chain__ChainKey_Closure)
(const Textsecure__SessionStructure__Chain__ChainKey *message,
void *closure_data);
typedef void (*Textsecure__SessionStructure__Chain__MessageKey_Closure)
(const Textsecure__SessionStructure__Chain__MessageKey *message,
void *closure_data);
typedef void (*Textsecure__SessionStructure__Chain_Closure)
(const Textsecure__SessionStructure__Chain *message,
void *closure_data);
typedef void (*Textsecure__SessionStructure__PendingKeyExchange_Closure)
(const Textsecure__SessionStructure__PendingKeyExchange *message,
void *closure_data);
typedef void (*Textsecure__SessionStructure__PendingPreKey_Closure)
(const Textsecure__SessionStructure__PendingPreKey *message,
void *closure_data);
typedef void (*Textsecure__SessionStructure_Closure)
(const Textsecure__SessionStructure *message,
void *closure_data);
typedef void (*Textsecure__RecordStructure_Closure)
(const Textsecure__RecordStructure *message,
void *closure_data);
typedef void (*Textsecure__PreKeyRecordStructure_Closure)
(const Textsecure__PreKeyRecordStructure *message,
void *closure_data);
typedef void (*Textsecure__SignedPreKeyRecordStructure_Closure)
(const Textsecure__SignedPreKeyRecordStructure *message,
void *closure_data);
typedef void (*Textsecure__IdentityKeyPairStructure_Closure)
(const Textsecure__IdentityKeyPairStructure *message,
void *closure_data);
typedef void (*Textsecure__SenderKeyStateStructure__SenderChainKey_Closure)
(const Textsecure__SenderKeyStateStructure__SenderChainKey *message,
void *closure_data);
typedef void (*Textsecure__SenderKeyStateStructure__SenderMessageKey_Closure)
(const Textsecure__SenderKeyStateStructure__SenderMessageKey *message,
void *closure_data);
typedef void (*Textsecure__SenderKeyStateStructure__SenderSigningKey_Closure)
(const Textsecure__SenderKeyStateStructure__SenderSigningKey *message,
void *closure_data);
typedef void (*Textsecure__SenderKeyStateStructure_Closure)
(const Textsecure__SenderKeyStateStructure *message,
void *closure_data);
typedef void (*Textsecure__SenderKeyRecordStructure_Closure)
(const Textsecure__SenderKeyRecordStructure *message,
void *closure_data);
/* --- services --- */
/* --- descriptors --- */
extern const ProtobufCMessageDescriptor textsecure__session_structure__descriptor;
extern const ProtobufCMessageDescriptor textsecure__session_structure__chain__descriptor;
extern const ProtobufCMessageDescriptor textsecure__session_structure__chain__chain_key__descriptor;
extern const ProtobufCMessageDescriptor textsecure__session_structure__chain__message_key__descriptor;
extern const ProtobufCMessageDescriptor textsecure__session_structure__pending_key_exchange__descriptor;
extern const ProtobufCMessageDescriptor textsecure__session_structure__pending_pre_key__descriptor;
extern const ProtobufCMessageDescriptor textsecure__record_structure__descriptor;
extern const ProtobufCMessageDescriptor textsecure__pre_key_record_structure__descriptor;
extern const ProtobufCMessageDescriptor textsecure__signed_pre_key_record_structure__descriptor;
extern const ProtobufCMessageDescriptor textsecure__identity_key_pair_structure__descriptor;
extern const ProtobufCMessageDescriptor textsecure__sender_key_state_structure__descriptor;
extern const ProtobufCMessageDescriptor textsecure__sender_key_state_structure__sender_chain_key__descriptor;
extern const ProtobufCMessageDescriptor textsecure__sender_key_state_structure__sender_message_key__descriptor;
extern const ProtobufCMessageDescriptor textsecure__sender_key_state_structure__sender_signing_key__descriptor;
extern const ProtobufCMessageDescriptor textsecure__sender_key_record_structure__descriptor;
PROTOBUF_C__END_DECLS
#endif /* PROTOBUF_C_LocalStorageProtocol_2eproto__INCLUDED */

View file

@ -0,0 +1,729 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: WhisperTextProtocol.proto */
/* Do not generate deprecated warnings for self */
#ifndef PROTOBUF_C__NO_DEPRECATED
#define PROTOBUF_C__NO_DEPRECATED
#endif
#include "WhisperTextProtocol.pb-c.h"
void textsecure__signal_message__init
(Textsecure__SignalMessage *message)
{
static Textsecure__SignalMessage init_value = TEXTSECURE__SIGNAL_MESSAGE__INIT;
*message = init_value;
}
size_t textsecure__signal_message__get_packed_size
(const Textsecure__SignalMessage *message)
{
assert(message->base.descriptor == &textsecure__signal_message__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t textsecure__signal_message__pack
(const Textsecure__SignalMessage *message,
uint8_t *out)
{
assert(message->base.descriptor == &textsecure__signal_message__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t textsecure__signal_message__pack_to_buffer
(const Textsecure__SignalMessage *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &textsecure__signal_message__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Textsecure__SignalMessage *
textsecure__signal_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Textsecure__SignalMessage *)
protobuf_c_message_unpack (&textsecure__signal_message__descriptor,
allocator, len, data);
}
void textsecure__signal_message__free_unpacked
(Textsecure__SignalMessage *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &textsecure__signal_message__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void textsecure__pre_key_signal_message__init
(Textsecure__PreKeySignalMessage *message)
{
static Textsecure__PreKeySignalMessage init_value = TEXTSECURE__PRE_KEY_SIGNAL_MESSAGE__INIT;
*message = init_value;
}
size_t textsecure__pre_key_signal_message__get_packed_size
(const Textsecure__PreKeySignalMessage *message)
{
assert(message->base.descriptor == &textsecure__pre_key_signal_message__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t textsecure__pre_key_signal_message__pack
(const Textsecure__PreKeySignalMessage *message,
uint8_t *out)
{
assert(message->base.descriptor == &textsecure__pre_key_signal_message__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t textsecure__pre_key_signal_message__pack_to_buffer
(const Textsecure__PreKeySignalMessage *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &textsecure__pre_key_signal_message__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Textsecure__PreKeySignalMessage *
textsecure__pre_key_signal_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Textsecure__PreKeySignalMessage *)
protobuf_c_message_unpack (&textsecure__pre_key_signal_message__descriptor,
allocator, len, data);
}
void textsecure__pre_key_signal_message__free_unpacked
(Textsecure__PreKeySignalMessage *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &textsecure__pre_key_signal_message__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void textsecure__key_exchange_message__init
(Textsecure__KeyExchangeMessage *message)
{
static Textsecure__KeyExchangeMessage init_value = TEXTSECURE__KEY_EXCHANGE_MESSAGE__INIT;
*message = init_value;
}
size_t textsecure__key_exchange_message__get_packed_size
(const Textsecure__KeyExchangeMessage *message)
{
assert(message->base.descriptor == &textsecure__key_exchange_message__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t textsecure__key_exchange_message__pack
(const Textsecure__KeyExchangeMessage *message,
uint8_t *out)
{
assert(message->base.descriptor == &textsecure__key_exchange_message__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t textsecure__key_exchange_message__pack_to_buffer
(const Textsecure__KeyExchangeMessage *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &textsecure__key_exchange_message__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Textsecure__KeyExchangeMessage *
textsecure__key_exchange_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Textsecure__KeyExchangeMessage *)
protobuf_c_message_unpack (&textsecure__key_exchange_message__descriptor,
allocator, len, data);
}
void textsecure__key_exchange_message__free_unpacked
(Textsecure__KeyExchangeMessage *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &textsecure__key_exchange_message__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void textsecure__sender_key_message__init
(Textsecure__SenderKeyMessage *message)
{
static Textsecure__SenderKeyMessage init_value = TEXTSECURE__SENDER_KEY_MESSAGE__INIT;
*message = init_value;
}
size_t textsecure__sender_key_message__get_packed_size
(const Textsecure__SenderKeyMessage *message)
{
assert(message->base.descriptor == &textsecure__sender_key_message__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t textsecure__sender_key_message__pack
(const Textsecure__SenderKeyMessage *message,
uint8_t *out)
{
assert(message->base.descriptor == &textsecure__sender_key_message__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t textsecure__sender_key_message__pack_to_buffer
(const Textsecure__SenderKeyMessage *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &textsecure__sender_key_message__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Textsecure__SenderKeyMessage *
textsecure__sender_key_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Textsecure__SenderKeyMessage *)
protobuf_c_message_unpack (&textsecure__sender_key_message__descriptor,
allocator, len, data);
}
void textsecure__sender_key_message__free_unpacked
(Textsecure__SenderKeyMessage *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &textsecure__sender_key_message__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void textsecure__sender_key_distribution_message__init
(Textsecure__SenderKeyDistributionMessage *message)
{
static Textsecure__SenderKeyDistributionMessage init_value = TEXTSECURE__SENDER_KEY_DISTRIBUTION_MESSAGE__INIT;
*message = init_value;
}
size_t textsecure__sender_key_distribution_message__get_packed_size
(const Textsecure__SenderKeyDistributionMessage *message)
{
assert(message->base.descriptor == &textsecure__sender_key_distribution_message__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t textsecure__sender_key_distribution_message__pack
(const Textsecure__SenderKeyDistributionMessage *message,
uint8_t *out)
{
assert(message->base.descriptor == &textsecure__sender_key_distribution_message__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t textsecure__sender_key_distribution_message__pack_to_buffer
(const Textsecure__SenderKeyDistributionMessage *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &textsecure__sender_key_distribution_message__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Textsecure__SenderKeyDistributionMessage *
textsecure__sender_key_distribution_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Textsecure__SenderKeyDistributionMessage *)
protobuf_c_message_unpack (&textsecure__sender_key_distribution_message__descriptor,
allocator, len, data);
}
void textsecure__sender_key_distribution_message__free_unpacked
(Textsecure__SenderKeyDistributionMessage *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &textsecure__sender_key_distribution_message__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void textsecure__device_consistency_code_message__init
(Textsecure__DeviceConsistencyCodeMessage *message)
{
static Textsecure__DeviceConsistencyCodeMessage init_value = TEXTSECURE__DEVICE_CONSISTENCY_CODE_MESSAGE__INIT;
*message = init_value;
}
size_t textsecure__device_consistency_code_message__get_packed_size
(const Textsecure__DeviceConsistencyCodeMessage *message)
{
assert(message->base.descriptor == &textsecure__device_consistency_code_message__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t textsecure__device_consistency_code_message__pack
(const Textsecure__DeviceConsistencyCodeMessage *message,
uint8_t *out)
{
assert(message->base.descriptor == &textsecure__device_consistency_code_message__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t textsecure__device_consistency_code_message__pack_to_buffer
(const Textsecure__DeviceConsistencyCodeMessage *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &textsecure__device_consistency_code_message__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Textsecure__DeviceConsistencyCodeMessage *
textsecure__device_consistency_code_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Textsecure__DeviceConsistencyCodeMessage *)
protobuf_c_message_unpack (&textsecure__device_consistency_code_message__descriptor,
allocator, len, data);
}
void textsecure__device_consistency_code_message__free_unpacked
(Textsecure__DeviceConsistencyCodeMessage *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &textsecure__device_consistency_code_message__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
static const ProtobufCFieldDescriptor textsecure__signal_message__field_descriptors[4] =
{
{
"ratchetKey",
1,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__SignalMessage, has_ratchetkey),
offsetof(Textsecure__SignalMessage, ratchetkey),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"counter",
2,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__SignalMessage, has_counter),
offsetof(Textsecure__SignalMessage, counter),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"previousCounter",
3,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__SignalMessage, has_previouscounter),
offsetof(Textsecure__SignalMessage, previouscounter),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"ciphertext",
4,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__SignalMessage, has_ciphertext),
offsetof(Textsecure__SignalMessage, ciphertext),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned textsecure__signal_message__field_indices_by_name[] = {
3, /* field[3] = ciphertext */
1, /* field[1] = counter */
2, /* field[2] = previousCounter */
0, /* field[0] = ratchetKey */
};
static const ProtobufCIntRange textsecure__signal_message__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 4 }
};
const ProtobufCMessageDescriptor textsecure__signal_message__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"textsecure.SignalMessage",
"SignalMessage",
"Textsecure__SignalMessage",
"textsecure",
sizeof(Textsecure__SignalMessage),
4,
textsecure__signal_message__field_descriptors,
textsecure__signal_message__field_indices_by_name,
1, textsecure__signal_message__number_ranges,
(ProtobufCMessageInit) textsecure__signal_message__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor textsecure__pre_key_signal_message__field_descriptors[6] =
{
{
"preKeyId",
1,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__PreKeySignalMessage, has_prekeyid),
offsetof(Textsecure__PreKeySignalMessage, prekeyid),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"baseKey",
2,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__PreKeySignalMessage, has_basekey),
offsetof(Textsecure__PreKeySignalMessage, basekey),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"identityKey",
3,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__PreKeySignalMessage, has_identitykey),
offsetof(Textsecure__PreKeySignalMessage, identitykey),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"message",
4,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__PreKeySignalMessage, has_message),
offsetof(Textsecure__PreKeySignalMessage, message),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"registrationId",
5,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__PreKeySignalMessage, has_registrationid),
offsetof(Textsecure__PreKeySignalMessage, registrationid),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"signedPreKeyId",
6,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__PreKeySignalMessage, has_signedprekeyid),
offsetof(Textsecure__PreKeySignalMessage, signedprekeyid),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned textsecure__pre_key_signal_message__field_indices_by_name[] = {
1, /* field[1] = baseKey */
2, /* field[2] = identityKey */
3, /* field[3] = message */
0, /* field[0] = preKeyId */
4, /* field[4] = registrationId */
5, /* field[5] = signedPreKeyId */
};
static const ProtobufCIntRange textsecure__pre_key_signal_message__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 6 }
};
const ProtobufCMessageDescriptor textsecure__pre_key_signal_message__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"textsecure.PreKeySignalMessage",
"PreKeySignalMessage",
"Textsecure__PreKeySignalMessage",
"textsecure",
sizeof(Textsecure__PreKeySignalMessage),
6,
textsecure__pre_key_signal_message__field_descriptors,
textsecure__pre_key_signal_message__field_indices_by_name,
1, textsecure__pre_key_signal_message__number_ranges,
(ProtobufCMessageInit) textsecure__pre_key_signal_message__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor textsecure__key_exchange_message__field_descriptors[5] =
{
{
"id",
1,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__KeyExchangeMessage, has_id),
offsetof(Textsecure__KeyExchangeMessage, id),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"baseKey",
2,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__KeyExchangeMessage, has_basekey),
offsetof(Textsecure__KeyExchangeMessage, basekey),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"ratchetKey",
3,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__KeyExchangeMessage, has_ratchetkey),
offsetof(Textsecure__KeyExchangeMessage, ratchetkey),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"identityKey",
4,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__KeyExchangeMessage, has_identitykey),
offsetof(Textsecure__KeyExchangeMessage, identitykey),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"baseKeySignature",
5,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__KeyExchangeMessage, has_basekeysignature),
offsetof(Textsecure__KeyExchangeMessage, basekeysignature),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned textsecure__key_exchange_message__field_indices_by_name[] = {
1, /* field[1] = baseKey */
4, /* field[4] = baseKeySignature */
0, /* field[0] = id */
3, /* field[3] = identityKey */
2, /* field[2] = ratchetKey */
};
static const ProtobufCIntRange textsecure__key_exchange_message__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 5 }
};
const ProtobufCMessageDescriptor textsecure__key_exchange_message__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"textsecure.KeyExchangeMessage",
"KeyExchangeMessage",
"Textsecure__KeyExchangeMessage",
"textsecure",
sizeof(Textsecure__KeyExchangeMessage),
5,
textsecure__key_exchange_message__field_descriptors,
textsecure__key_exchange_message__field_indices_by_name,
1, textsecure__key_exchange_message__number_ranges,
(ProtobufCMessageInit) textsecure__key_exchange_message__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor textsecure__sender_key_message__field_descriptors[3] =
{
{
"id",
1,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__SenderKeyMessage, has_id),
offsetof(Textsecure__SenderKeyMessage, id),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"iteration",
2,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__SenderKeyMessage, has_iteration),
offsetof(Textsecure__SenderKeyMessage, iteration),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"ciphertext",
3,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__SenderKeyMessage, has_ciphertext),
offsetof(Textsecure__SenderKeyMessage, ciphertext),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned textsecure__sender_key_message__field_indices_by_name[] = {
2, /* field[2] = ciphertext */
0, /* field[0] = id */
1, /* field[1] = iteration */
};
static const ProtobufCIntRange textsecure__sender_key_message__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 3 }
};
const ProtobufCMessageDescriptor textsecure__sender_key_message__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"textsecure.SenderKeyMessage",
"SenderKeyMessage",
"Textsecure__SenderKeyMessage",
"textsecure",
sizeof(Textsecure__SenderKeyMessage),
3,
textsecure__sender_key_message__field_descriptors,
textsecure__sender_key_message__field_indices_by_name,
1, textsecure__sender_key_message__number_ranges,
(ProtobufCMessageInit) textsecure__sender_key_message__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor textsecure__sender_key_distribution_message__field_descriptors[4] =
{
{
"id",
1,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__SenderKeyDistributionMessage, has_id),
offsetof(Textsecure__SenderKeyDistributionMessage, id),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"iteration",
2,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__SenderKeyDistributionMessage, has_iteration),
offsetof(Textsecure__SenderKeyDistributionMessage, iteration),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"chainKey",
3,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__SenderKeyDistributionMessage, has_chainkey),
offsetof(Textsecure__SenderKeyDistributionMessage, chainkey),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"signingKey",
4,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__SenderKeyDistributionMessage, has_signingkey),
offsetof(Textsecure__SenderKeyDistributionMessage, signingkey),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned textsecure__sender_key_distribution_message__field_indices_by_name[] = {
2, /* field[2] = chainKey */
0, /* field[0] = id */
1, /* field[1] = iteration */
3, /* field[3] = signingKey */
};
static const ProtobufCIntRange textsecure__sender_key_distribution_message__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 4 }
};
const ProtobufCMessageDescriptor textsecure__sender_key_distribution_message__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"textsecure.SenderKeyDistributionMessage",
"SenderKeyDistributionMessage",
"Textsecure__SenderKeyDistributionMessage",
"textsecure",
sizeof(Textsecure__SenderKeyDistributionMessage),
4,
textsecure__sender_key_distribution_message__field_descriptors,
textsecure__sender_key_distribution_message__field_indices_by_name,
1, textsecure__sender_key_distribution_message__number_ranges,
(ProtobufCMessageInit) textsecure__sender_key_distribution_message__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor textsecure__device_consistency_code_message__field_descriptors[2] =
{
{
"generation",
1,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_UINT32,
offsetof(Textsecure__DeviceConsistencyCodeMessage, has_generation),
offsetof(Textsecure__DeviceConsistencyCodeMessage, generation),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"signature",
2,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_BYTES,
offsetof(Textsecure__DeviceConsistencyCodeMessage, has_signature),
offsetof(Textsecure__DeviceConsistencyCodeMessage, signature),
NULL,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned textsecure__device_consistency_code_message__field_indices_by_name[] = {
0, /* field[0] = generation */
1, /* field[1] = signature */
};
static const ProtobufCIntRange textsecure__device_consistency_code_message__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 2 }
};
const ProtobufCMessageDescriptor textsecure__device_consistency_code_message__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"textsecure.DeviceConsistencyCodeMessage",
"DeviceConsistencyCodeMessage",
"Textsecure__DeviceConsistencyCodeMessage",
"textsecure",
sizeof(Textsecure__DeviceConsistencyCodeMessage),
2,
textsecure__device_consistency_code_message__field_descriptors,
textsecure__device_consistency_code_message__field_indices_by_name,
1, textsecure__device_consistency_code_message__number_ranges,
(ProtobufCMessageInit) textsecure__device_consistency_code_message__init,
NULL,NULL,NULL /* reserved[123] */
};

View file

@ -0,0 +1,286 @@
/* Generated by the protocol buffer compiler. DO NOT EDIT! */
/* Generated from: WhisperTextProtocol.proto */
#ifndef PROTOBUF_C_WhisperTextProtocol_2eproto__INCLUDED
#define PROTOBUF_C_WhisperTextProtocol_2eproto__INCLUDED
#include "protobuf-c/protobuf-c.h"
PROTOBUF_C__BEGIN_DECLS
#if PROTOBUF_C_VERSION_NUMBER < 1000000
# error This file was generated by a newer version of protoc-c which is incompatible with your libprotobuf-c headers. Please update your headers.
#elif 1002001 < PROTOBUF_C_MIN_COMPILER_VERSION
# error This file was generated by an older version of protoc-c which is incompatible with your libprotobuf-c headers. Please regenerate this file with a newer version of protoc-c.
#endif
typedef struct _Textsecure__SignalMessage Textsecure__SignalMessage;
typedef struct _Textsecure__PreKeySignalMessage Textsecure__PreKeySignalMessage;
typedef struct _Textsecure__KeyExchangeMessage Textsecure__KeyExchangeMessage;
typedef struct _Textsecure__SenderKeyMessage Textsecure__SenderKeyMessage;
typedef struct _Textsecure__SenderKeyDistributionMessage Textsecure__SenderKeyDistributionMessage;
typedef struct _Textsecure__DeviceConsistencyCodeMessage Textsecure__DeviceConsistencyCodeMessage;
/* --- enums --- */
/* --- messages --- */
struct _Textsecure__SignalMessage
{
ProtobufCMessage base;
protobuf_c_boolean has_ratchetkey;
ProtobufCBinaryData ratchetkey;
protobuf_c_boolean has_counter;
uint32_t counter;
protobuf_c_boolean has_previouscounter;
uint32_t previouscounter;
protobuf_c_boolean has_ciphertext;
ProtobufCBinaryData ciphertext;
};
#define TEXTSECURE__SIGNAL_MESSAGE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__signal_message__descriptor) \
, 0,{0,NULL}, 0,0, 0,0, 0,{0,NULL} }
struct _Textsecure__PreKeySignalMessage
{
ProtobufCMessage base;
protobuf_c_boolean has_registrationid;
uint32_t registrationid;
protobuf_c_boolean has_prekeyid;
uint32_t prekeyid;
protobuf_c_boolean has_signedprekeyid;
uint32_t signedprekeyid;
protobuf_c_boolean has_basekey;
ProtobufCBinaryData basekey;
protobuf_c_boolean has_identitykey;
ProtobufCBinaryData identitykey;
/*
* SignalMessage
*/
protobuf_c_boolean has_message;
ProtobufCBinaryData message;
};
#define TEXTSECURE__PRE_KEY_SIGNAL_MESSAGE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__pre_key_signal_message__descriptor) \
, 0,0, 0,0, 0,0, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__KeyExchangeMessage
{
ProtobufCMessage base;
protobuf_c_boolean has_id;
uint32_t id;
protobuf_c_boolean has_basekey;
ProtobufCBinaryData basekey;
protobuf_c_boolean has_ratchetkey;
ProtobufCBinaryData ratchetkey;
protobuf_c_boolean has_identitykey;
ProtobufCBinaryData identitykey;
protobuf_c_boolean has_basekeysignature;
ProtobufCBinaryData basekeysignature;
};
#define TEXTSECURE__KEY_EXCHANGE_MESSAGE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__key_exchange_message__descriptor) \
, 0,0, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__SenderKeyMessage
{
ProtobufCMessage base;
protobuf_c_boolean has_id;
uint32_t id;
protobuf_c_boolean has_iteration;
uint32_t iteration;
protobuf_c_boolean has_ciphertext;
ProtobufCBinaryData ciphertext;
};
#define TEXTSECURE__SENDER_KEY_MESSAGE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__sender_key_message__descriptor) \
, 0,0, 0,0, 0,{0,NULL} }
struct _Textsecure__SenderKeyDistributionMessage
{
ProtobufCMessage base;
protobuf_c_boolean has_id;
uint32_t id;
protobuf_c_boolean has_iteration;
uint32_t iteration;
protobuf_c_boolean has_chainkey;
ProtobufCBinaryData chainkey;
protobuf_c_boolean has_signingkey;
ProtobufCBinaryData signingkey;
};
#define TEXTSECURE__SENDER_KEY_DISTRIBUTION_MESSAGE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__sender_key_distribution_message__descriptor) \
, 0,0, 0,0, 0,{0,NULL}, 0,{0,NULL} }
struct _Textsecure__DeviceConsistencyCodeMessage
{
ProtobufCMessage base;
protobuf_c_boolean has_generation;
uint32_t generation;
protobuf_c_boolean has_signature;
ProtobufCBinaryData signature;
};
#define TEXTSECURE__DEVICE_CONSISTENCY_CODE_MESSAGE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&textsecure__device_consistency_code_message__descriptor) \
, 0,0, 0,{0,NULL} }
/* Textsecure__SignalMessage methods */
void textsecure__signal_message__init
(Textsecure__SignalMessage *message);
size_t textsecure__signal_message__get_packed_size
(const Textsecure__SignalMessage *message);
size_t textsecure__signal_message__pack
(const Textsecure__SignalMessage *message,
uint8_t *out);
size_t textsecure__signal_message__pack_to_buffer
(const Textsecure__SignalMessage *message,
ProtobufCBuffer *buffer);
Textsecure__SignalMessage *
textsecure__signal_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__signal_message__free_unpacked
(Textsecure__SignalMessage *message,
ProtobufCAllocator *allocator);
/* Textsecure__PreKeySignalMessage methods */
void textsecure__pre_key_signal_message__init
(Textsecure__PreKeySignalMessage *message);
size_t textsecure__pre_key_signal_message__get_packed_size
(const Textsecure__PreKeySignalMessage *message);
size_t textsecure__pre_key_signal_message__pack
(const Textsecure__PreKeySignalMessage *message,
uint8_t *out);
size_t textsecure__pre_key_signal_message__pack_to_buffer
(const Textsecure__PreKeySignalMessage *message,
ProtobufCBuffer *buffer);
Textsecure__PreKeySignalMessage *
textsecure__pre_key_signal_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__pre_key_signal_message__free_unpacked
(Textsecure__PreKeySignalMessage *message,
ProtobufCAllocator *allocator);
/* Textsecure__KeyExchangeMessage methods */
void textsecure__key_exchange_message__init
(Textsecure__KeyExchangeMessage *message);
size_t textsecure__key_exchange_message__get_packed_size
(const Textsecure__KeyExchangeMessage *message);
size_t textsecure__key_exchange_message__pack
(const Textsecure__KeyExchangeMessage *message,
uint8_t *out);
size_t textsecure__key_exchange_message__pack_to_buffer
(const Textsecure__KeyExchangeMessage *message,
ProtobufCBuffer *buffer);
Textsecure__KeyExchangeMessage *
textsecure__key_exchange_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__key_exchange_message__free_unpacked
(Textsecure__KeyExchangeMessage *message,
ProtobufCAllocator *allocator);
/* Textsecure__SenderKeyMessage methods */
void textsecure__sender_key_message__init
(Textsecure__SenderKeyMessage *message);
size_t textsecure__sender_key_message__get_packed_size
(const Textsecure__SenderKeyMessage *message);
size_t textsecure__sender_key_message__pack
(const Textsecure__SenderKeyMessage *message,
uint8_t *out);
size_t textsecure__sender_key_message__pack_to_buffer
(const Textsecure__SenderKeyMessage *message,
ProtobufCBuffer *buffer);
Textsecure__SenderKeyMessage *
textsecure__sender_key_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__sender_key_message__free_unpacked
(Textsecure__SenderKeyMessage *message,
ProtobufCAllocator *allocator);
/* Textsecure__SenderKeyDistributionMessage methods */
void textsecure__sender_key_distribution_message__init
(Textsecure__SenderKeyDistributionMessage *message);
size_t textsecure__sender_key_distribution_message__get_packed_size
(const Textsecure__SenderKeyDistributionMessage *message);
size_t textsecure__sender_key_distribution_message__pack
(const Textsecure__SenderKeyDistributionMessage *message,
uint8_t *out);
size_t textsecure__sender_key_distribution_message__pack_to_buffer
(const Textsecure__SenderKeyDistributionMessage *message,
ProtobufCBuffer *buffer);
Textsecure__SenderKeyDistributionMessage *
textsecure__sender_key_distribution_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__sender_key_distribution_message__free_unpacked
(Textsecure__SenderKeyDistributionMessage *message,
ProtobufCAllocator *allocator);
/* Textsecure__DeviceConsistencyCodeMessage methods */
void textsecure__device_consistency_code_message__init
(Textsecure__DeviceConsistencyCodeMessage *message);
size_t textsecure__device_consistency_code_message__get_packed_size
(const Textsecure__DeviceConsistencyCodeMessage *message);
size_t textsecure__device_consistency_code_message__pack
(const Textsecure__DeviceConsistencyCodeMessage *message,
uint8_t *out);
size_t textsecure__device_consistency_code_message__pack_to_buffer
(const Textsecure__DeviceConsistencyCodeMessage *message,
ProtobufCBuffer *buffer);
Textsecure__DeviceConsistencyCodeMessage *
textsecure__device_consistency_code_message__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void textsecure__device_consistency_code_message__free_unpacked
(Textsecure__DeviceConsistencyCodeMessage *message,
ProtobufCAllocator *allocator);
/* --- per-message closures --- */
typedef void (*Textsecure__SignalMessage_Closure)
(const Textsecure__SignalMessage *message,
void *closure_data);
typedef void (*Textsecure__PreKeySignalMessage_Closure)
(const Textsecure__PreKeySignalMessage *message,
void *closure_data);
typedef void (*Textsecure__KeyExchangeMessage_Closure)
(const Textsecure__KeyExchangeMessage *message,
void *closure_data);
typedef void (*Textsecure__SenderKeyMessage_Closure)
(const Textsecure__SenderKeyMessage *message,
void *closure_data);
typedef void (*Textsecure__SenderKeyDistributionMessage_Closure)
(const Textsecure__SenderKeyDistributionMessage *message,
void *closure_data);
typedef void (*Textsecure__DeviceConsistencyCodeMessage_Closure)
(const Textsecure__DeviceConsistencyCodeMessage *message,
void *closure_data);
/* --- services --- */
/* --- descriptors --- */
extern const ProtobufCMessageDescriptor textsecure__signal_message__descriptor;
extern const ProtobufCMessageDescriptor textsecure__pre_key_signal_message__descriptor;
extern const ProtobufCMessageDescriptor textsecure__key_exchange_message__descriptor;
extern const ProtobufCMessageDescriptor textsecure__sender_key_message__descriptor;
extern const ProtobufCMessageDescriptor textsecure__sender_key_distribution_message__descriptor;
extern const ProtobufCMessageDescriptor textsecure__device_consistency_code_message__descriptor;
PROTOBUF_C__END_DECLS
#endif /* PROTOBUF_C_WhisperTextProtocol_2eproto__INCLUDED */

665
Sources/libsignal/curve.c Executable file
View file

@ -0,0 +1,665 @@
#include "curve.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "protobuf-c/protobuf-c.h"
#include "curve25519/curve25519-donna.h"
#include "curve25519/ed25519/additions/curve_sigs.h"
#include "curve25519/ed25519/additions/generalized/gen_x.h"
#include "curve25519/ed25519/tests/internal_fast_tests.h"
#include "signal_protocol_internal.h"
#include "signal_utarray.h"
#define DJB_TYPE 0x05
#define DJB_KEY_LEN 32
#define VRF_VERIFY_LEN 32
struct ec_public_key
{
signal_type_base base;
uint8_t data[DJB_KEY_LEN];
};
struct ec_private_key
{
signal_type_base base;
uint8_t data[DJB_KEY_LEN];
};
struct ec_key_pair
{
signal_type_base base;
ec_public_key *public_key;
ec_private_key *private_key;
};
struct ec_public_key_list
{
UT_array *values;
};
int curve_internal_fast_tests(int silent)
{
if (all_fast_tests(silent) != 0)
return SG_ERR_UNKNOWN;
return 0;
}
int curve_decode_point(ec_public_key **public_key, const uint8_t *key_data, size_t key_len, signal_context *global_context)
{
ec_public_key *key = 0;
if(key_len > 0 && key_data[0] != DJB_TYPE) {
signal_log(global_context, SG_LOG_ERROR, "Invalid key type: %d", key_data[0]);
return SG_ERR_INVALID_KEY;
}
if(key_len != DJB_KEY_LEN + 1) {
signal_log(global_context, SG_LOG_ERROR, "Invalid key length: %d", key_len);
return SG_ERR_INVALID_KEY;
}
key = malloc(sizeof(ec_public_key));
if(!key) {
return SG_ERR_NOMEM;
}
SIGNAL_INIT(key, ec_public_key_destroy);
memcpy(key->data, key_data + 1, DJB_KEY_LEN);
*public_key = key;
return 0;
}
int ec_public_key_compare(const ec_public_key *key1, const ec_public_key *key2)
{
if(key1 == key2) {
return 0;
}
else if(key1 == 0 && key2 != 0) {
return -1;
}
else if(key1 != 0 && key2 == 0) {
return 1;
}
else {
return signal_constant_memcmp(key1->data, key2->data, DJB_KEY_LEN);
}
}
int ec_public_key_memcmp(const ec_public_key *key1, const ec_public_key *key2)
{
if(key1 == key2) {
return 0;
}
else if(key1 == 0 && key2 != 0) {
return -1;
}
else if(key1 != 0 && key2 == 0) {
return 1;
}
else {
return memcmp(key1->data, key2->data, DJB_KEY_LEN);
}
}
int ec_public_key_serialize(signal_buffer **buffer, const ec_public_key *key)
{
signal_buffer *buf = 0;
uint8_t *data = 0;
if(!key) {
return SG_ERR_INVAL;
}
buf = signal_buffer_alloc(sizeof(uint8_t) * (DJB_KEY_LEN + 1));
if(!buf) {
return SG_ERR_NOMEM;
}
data = signal_buffer_data(buf);
data[0] = DJB_TYPE;
memcpy(data + 1, key->data, DJB_KEY_LEN);
*buffer = buf;
return 0;
}
int ec_public_key_serialize_protobuf(ProtobufCBinaryData *buffer, const ec_public_key *key)
{
size_t len = 0;
uint8_t *data = 0;
assert(buffer);
assert(key);
len = sizeof(uint8_t) * (DJB_KEY_LEN + 1);
data = malloc(len);
if(!data) {
return SG_ERR_NOMEM;
}
data[0] = DJB_TYPE;
memcpy(data + 1, key->data, DJB_KEY_LEN);
buffer->data = data;
buffer->len = len;
return 0;
}
void ec_public_key_destroy(signal_type_base *type)
{
ec_public_key *public_key = (ec_public_key *)type;
free(public_key);
}
int curve_decode_private_point(ec_private_key **private_key, const uint8_t *key_data, size_t key_len, signal_context *global_context)
{
ec_private_key *key = 0;
if(key_len != DJB_KEY_LEN) {
signal_log(global_context, SG_LOG_ERROR, "Invalid key length: %d", key_len);
return SG_ERR_INVALID_KEY;
}
key = malloc(sizeof(ec_private_key));
if(!key) {
return SG_ERR_NOMEM;
}
SIGNAL_INIT(key, ec_private_key_destroy);
memcpy(key->data, key_data, DJB_KEY_LEN);
*private_key = key;
return 0;
}
int ec_private_key_compare(const ec_private_key *key1, const ec_private_key *key2)
{
if(key1 == key2) {
return 0;
}
else if(key1 == 0 && key2 != 0) {
return -1;
}
else if(key1 != 0 && key2 == 0) {
return 1;
}
else {
return signal_constant_memcmp(key1->data, key2->data, DJB_KEY_LEN);
}
}
int ec_private_key_serialize(signal_buffer **buffer, const ec_private_key *key)
{
signal_buffer *buf = 0;
uint8_t *data = 0 ;
buf = signal_buffer_alloc(sizeof(uint8_t) * DJB_KEY_LEN);
if(!buf) {
return SG_ERR_NOMEM;
}
data = signal_buffer_data(buf);
memcpy(data, key->data, DJB_KEY_LEN);
*buffer = buf;
return 0;
}
int ec_private_key_serialize_protobuf(ProtobufCBinaryData *buffer, const ec_private_key *key)
{
size_t len = 0;
uint8_t *data = 0;
assert(buffer);
assert(key);
len = sizeof(uint8_t) * DJB_KEY_LEN;
data = malloc(len);
if(!data) {
return SG_ERR_NOMEM;
}
memcpy(data, key->data, DJB_KEY_LEN);
buffer->data = data;
buffer->len = len;
return 0;
}
void ec_private_key_destroy(signal_type_base *type)
{
ec_private_key *private_key = (ec_private_key *)type;
signal_explicit_bzero(private_key, sizeof(ec_private_key));
free(private_key);
}
int ec_key_pair_create(ec_key_pair **key_pair, ec_public_key *public_key, ec_private_key *private_key)
{
ec_key_pair *result = malloc(sizeof(ec_key_pair));
if(!result) {
return SG_ERR_NOMEM;
}
SIGNAL_INIT(result, ec_key_pair_destroy);
result->public_key = public_key;
SIGNAL_REF(public_key);
result->private_key = private_key;
SIGNAL_REF(private_key);
*key_pair = result;
return 0;
}
ec_public_key *ec_key_pair_get_public(const ec_key_pair *key_pair)
{
return key_pair->public_key;
}
ec_private_key *ec_key_pair_get_private(const ec_key_pair *key_pair)
{
return key_pair->private_key;
}
void ec_key_pair_destroy(signal_type_base *type)
{
ec_key_pair *key_pair = (ec_key_pair *)type;
SIGNAL_UNREF(key_pair->public_key);
SIGNAL_UNREF(key_pair->private_key);
free(key_pair);
}
int curve_generate_private_key(signal_context *context, ec_private_key **private_key)
{
int result = 0;
ec_private_key *key = 0;
assert(context);
key = malloc(sizeof(ec_private_key));
if(!key) {
result = SG_ERR_NOMEM;
goto complete;
}
SIGNAL_INIT(key, ec_private_key_destroy);
result = signal_crypto_random(context, key->data, DJB_KEY_LEN);
if(result < 0) {
goto complete;
}
key->data[0] &= 248;
key->data[31] &= 127;
key->data[31] |= 64;
complete:
if(result < 0) {
if(key) {
SIGNAL_UNREF(key);
}
}
else {
*private_key = key;
}
return result;
}
int curve_generate_public_key(ec_public_key **public_key, const ec_private_key *private_key)
{
static const uint8_t basepoint[32] = {9};
int result = 0;
ec_public_key *key = malloc(sizeof(ec_public_key));
if(!key) {
return SG_ERR_NOMEM;
}
SIGNAL_INIT(key, ec_public_key_destroy);
result = curve25519_donna(key->data, private_key->data, basepoint);
if(result == 0) {
*public_key = key;
return 0;
}
else {
if(key) {
SIGNAL_UNREF(key);
}
return SG_ERR_UNKNOWN;
}
}
int curve_generate_key_pair(signal_context *context, ec_key_pair **key_pair)
{
int result = 0;
ec_key_pair *pair_result = 0;
ec_private_key *key_private = 0;
ec_public_key *key_public = 0;
assert(context);
result = curve_generate_private_key(context, &key_private);
if(result < 0) {
goto complete;
}
result = curve_generate_public_key(&key_public, key_private);
if(result < 0) {
goto complete;
}
result = ec_key_pair_create(&pair_result, key_public, key_private);
if(result < 0) {
goto complete;
}
complete:
if(key_public) {
SIGNAL_UNREF(key_public);
}
if(key_private) {
SIGNAL_UNREF(key_private);
}
if(result < 0) {
if(pair_result) {
SIGNAL_UNREF(pair_result);
}
}
else {
*key_pair = pair_result;
}
return result;
}
ec_public_key_list *ec_public_key_list_alloc()
{
int result = 0;
ec_public_key_list *list = malloc(sizeof(ec_public_key_list));
if(!list) {
result = SG_ERR_NOMEM;
goto complete;
}
memset(list, 0, sizeof(ec_public_key_list));
utarray_new(list->values, &ut_ptr_icd);
complete:
if(result < 0) {
if(list) {
free(list);
}
return 0;
}
else {
return list;
}
}
ec_public_key_list *ec_public_key_list_copy(const ec_public_key_list *list)
{
int result = 0;
ec_public_key_list *result_list = 0;
unsigned int size;
unsigned int i;
ec_public_key **p;
result_list = ec_public_key_list_alloc();
if(!result_list) {
result = SG_ERR_NOMEM;
goto complete;
}
size = utarray_len(list->values);
utarray_reserve(result_list->values, size);
for (i = 0; i < size; i++) {
p = (ec_public_key **)utarray_eltptr(list->values, i);
result = ec_public_key_list_push_back(result_list, *p);
if(result < 0) {
goto complete;
}
}
complete:
if(result < 0) {
if(result_list) {
ec_public_key_list_free(result_list);
}
return 0;
}
else {
return result_list;
}
}
int ec_public_key_list_push_back(ec_public_key_list *list, ec_public_key *value)
{
int result = 0;
assert(list);
assert(value);
utarray_push_back(list->values, &value);
SIGNAL_REF(value);
complete:
return result;
}
unsigned int ec_public_key_list_size(const ec_public_key_list *list)
{
assert(list);
return utarray_len(list->values);
}
ec_public_key *ec_public_key_list_at(const ec_public_key_list *list, unsigned int index)
{
ec_public_key **value = 0;
assert(list);
assert(index < utarray_len(list->values));
value = (ec_public_key **)utarray_eltptr(list->values, index);
assert(*value);
return *value;
}
int ec_public_key_list_sort_comparator(const void *a, const void *b)
{
const ec_public_key *key1 = *((const ec_public_key **)a);
const ec_public_key *key2 = *((const ec_public_key **)b);
return ec_public_key_memcmp(key1, key2);
}
void ec_public_key_list_sort(ec_public_key_list *list)
{
assert(list);
utarray_sort(list->values, ec_public_key_list_sort_comparator);
}
void ec_public_key_list_free(ec_public_key_list *list)
{
unsigned int size;
unsigned int i;
ec_public_key **p;
if(list) {
size = utarray_len(list->values);
for (i = 0; i < size; i++) {
p = (ec_public_key **)utarray_eltptr(list->values, i);
SIGNAL_UNREF(*p);
}
utarray_free(list->values);
free(list);
}
}
int curve_calculate_agreement(uint8_t **shared_key_data, const ec_public_key *public_key, const ec_private_key *private_key)
{
uint8_t *key = 0;
int result = 0;
if(!public_key || !private_key) {
return SG_ERR_INVALID_KEY;
}
key = malloc(DJB_KEY_LEN);
if(!key) {
return SG_ERR_NOMEM;
}
result = curve25519_donna(key, private_key->data, public_key->data);
if(result == 0) {
*shared_key_data = key;
return DJB_KEY_LEN;
}
else {
if(key) {
free(key);
}
return SG_ERR_UNKNOWN;
}
}
int curve_verify_signature(const ec_public_key *signing_key,
const uint8_t *message_data, size_t message_len,
const uint8_t *signature_data, size_t signature_len)
{
if(signature_len != CURVE_SIGNATURE_LEN) {
return SG_ERR_INVAL;
}
return curve25519_verify(signature_data, signing_key->data, message_data, message_len) == 0;
}
int curve_calculate_signature(signal_context *context,
signal_buffer **signature,
const ec_private_key *signing_key,
const uint8_t *message_data, size_t message_len)
{
int result = 0;
uint8_t random_data[CURVE_SIGNATURE_LEN];
signal_buffer *buffer = 0;
result = signal_crypto_random(context, random_data, sizeof(random_data));
if(result < 0) {
goto complete;
}
buffer = signal_buffer_alloc(CURVE_SIGNATURE_LEN);
if(!buffer) {
result = SG_ERR_NOMEM;
goto complete;
}
result = curve25519_sign(signal_buffer_data(buffer), signing_key->data, message_data, message_len, random_data);
complete:
if(result < 0) {
if(buffer) {
signal_buffer_free(buffer);
}
}
else {
*signature = buffer;
}
return result;
}
int curve_verify_vrf_signature(signal_context *context,
signal_buffer **vrf_output,
const ec_public_key *signing_key,
const uint8_t *message_data, size_t message_len,
const uint8_t *signature_data, size_t signature_len)
{
int result = 0;
signal_buffer *buffer = 0;
if(!signing_key) {
return SG_ERR_INVAL;
}
if(!message_data || !signature_data || signature_len != VRF_SIGNATURE_LEN) {
signal_log(context, SG_LOG_ERROR, "Invalid message or signature format");
return SG_ERR_VRF_SIG_VERIF_FAILED;
}
buffer = signal_buffer_alloc(VRF_VERIFY_LEN);
if(!buffer) {
result = SG_ERR_NOMEM;
goto complete;
}
result = generalized_xveddsa_25519_verify(signal_buffer_data(buffer),
signature_data, signing_key->data,
message_data, message_len, NULL, 0);
if(result != 0) {
signal_log(context, SG_LOG_ERROR, "Invalid signature");
result = SG_ERR_VRF_SIG_VERIF_FAILED;
}
complete:
if(result < 0) {
signal_buffer_free(buffer);
}
else {
*vrf_output = buffer;
}
return result;
}
int curve_calculate_vrf_signature(signal_context *context,
signal_buffer **signature,
const ec_private_key *signing_key,
const uint8_t *message_data, size_t message_len)
{
int result = 0;
uint8_t random_data[64];
signal_buffer *buffer = 0;
result = signal_crypto_random(context, random_data, sizeof(random_data));
if(result < 0) {
goto complete;
}
buffer = signal_buffer_alloc(VRF_SIGNATURE_LEN);
if(!buffer) {
result = SG_ERR_NOMEM;
goto complete;
}
result = generalized_xveddsa_25519_sign(signal_buffer_data(buffer),
signing_key->data,
message_data, message_len, random_data, NULL, 0);
if(result != 0) {
signal_log(context, SG_LOG_ERROR, "Signature failed!");
result = SG_ERR_UNKNOWN;
}
complete:
if(result < 0) {
signal_buffer_free(buffer);
}
else {
*signature = buffer;
}
return result;
}

View file

@ -0,0 +1,870 @@
/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* curve25519-donna: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation. */
#include <string.h>
#include <stdint.h>
#ifdef _MSC_VER
#define inline __inline
#endif
typedef uint8_t u8;
typedef int32_t s32;
typedef int64_t limb;
/* Field element representation:
*
* Field elements are written as an array of signed, 64-bit limbs, least
* significant first. The value of the field element is:
* x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
*
* i.e. the limbs are 26, 25, 26, 25, ... bits wide. */
/* Sum two numbers: output += in */
static void fsum(limb *output, const limb *in) {
unsigned i;
for (i = 0; i < 10; i += 2) {
output[0+i] = output[0+i] + in[0+i];
output[1+i] = output[1+i] + in[1+i];
}
}
/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!). */
static void fdifference(limb *output, const limb *in) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = in[i] - output[i];
}
}
/* Multiply a number by a scalar: output = in * scalar */
static void fscalar_product(limb *output, const limb *in, const limb scalar) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = in[i] * scalar;
}
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs. */
static void fproduct(limb *output, const limb *in2, const limb *in) {
output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
((limb) ((s32) in2[1])) * ((s32) in[0]);
output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[0]);
output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[0]);
output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[1])) +
((limb) ((s32) in2[0])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[0]);
output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[0]);
output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[0]);
output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[0]);
output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[0]);
output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[0]);
output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[1])) +
((limb) ((s32) in2[4])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[4]) +
((limb) ((s32) in2[2])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[2]);
output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[2]);
output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[3])) +
((limb) ((s32) in2[4])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[4]);
output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[6]) +
((limb) ((s32) in2[5])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[4]);
output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
((limb) ((s32) in2[5])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[5])) +
((limb) ((s32) in2[6])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[6]);
output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[7]) +
((limb) ((s32) in2[6])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[6]);
output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[7]));
output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[8]);
output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
}
/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
*
* On entry: |output[i]| < 14*2^54
* On exit: |output[0..8]| < 280*2^54 */
static void freduce_degree(limb *output) {
/* Each of these shifts and adds ends up multiplying the value by 19.
*
* For output[0..8], the absolute entry value is < 14*2^54 and we add, at
* most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
output[8] += output[18] << 4;
output[8] += output[18] << 1;
output[8] += output[18];
output[7] += output[17] << 4;
output[7] += output[17] << 1;
output[7] += output[17];
output[6] += output[16] << 4;
output[6] += output[16] << 1;
output[6] += output[16];
output[5] += output[15] << 4;
output[5] += output[15] << 1;
output[5] += output[15];
output[4] += output[14] << 4;
output[4] += output[14] << 1;
output[4] += output[14];
output[3] += output[13] << 4;
output[3] += output[13] << 1;
output[3] += output[13];
output[2] += output[12] << 4;
output[2] += output[12] << 1;
output[2] += output[12];
output[1] += output[11] << 4;
output[1] += output[11] << 1;
output[1] += output[11];
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
}
#if (-1 & 3) != 3
#error "This code only works on a two's complement system"
#endif
/* return v / 2^26, using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb
div_by_2_26(const limb v)
{
/* High word of v; no shift needed. */
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31;
/* Set to 0x3ffffff if v was negative; else set to 0. */
const int32_t roundoff = ((uint32_t) sign) >> 6;
/* Should return v / (1<<26) */
return (v + roundoff) >> 26;
}
/* return v / (2^25), using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb
div_by_2_25(const limb v)
{
/* High word of v; no shift needed*/
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31;
/* Set to 0x1ffffff if v was negative; else set to 0. */
const int32_t roundoff = ((uint32_t) sign) >> 7;
/* Should return v / (1<<25) */
return (v + roundoff) >> 25;
}
/* return v / (2^25), using only shifts and adds.
*
* On entry: v can take any value. */
static inline s32
div_s32_by_2_25(const s32 v)
{
const s32 roundoff = ((uint32_t)(v >> 31)) >> 7;
return (v + roundoff) >> 25;
}
/* Reduce all coefficients of the short form input so that |x| < 2^26.
*
* On entry: |output[i]| < 280*2^54 */
static void freduce_coefficients(limb *output) {
unsigned i;
output[10] = 0;
for (i = 0; i < 10; i += 2) {
limb over = div_by_2_26(output[i]);
/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
* most, 280*2^28 in the first iteration of this loop. This is added to the
* next limb and we can approximate the resulting bound of that limb by
* 281*2^54. */
output[i] -= over << 26;
output[i+1] += over;
/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
* 281*2^29. When this is added to the next limb, the resulting bound can
* be approximated as 281*2^54.
*
* For subsequent iterations of the loop, 281*2^54 remains a conservative
* bound and no overflow occurs. */
over = div_by_2_25(output[i+1]);
output[i+1] -= over << 25;
output[i+2] += over;
}
/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
output[10] = 0;
/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
* So |over| will be no more than 2^16. */
{
limb over = div_by_2_26(output[0]);
output[0] -= over << 26;
output[1] += over;
}
/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
* bound on |output[1]| is sufficient to meet our needs. */
}
/* A helpful wrapper around fproduct: output = in * in2.
*
* On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
*
* output must be distinct to both inputs. The output is reduced degree
* (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */
static void
fmul(limb *output, const limb *in, const limb *in2) {
limb t[19];
fproduct(t, in, in2);
/* |t[i]| < 14*2^54 */
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
/* Square a number: output = in**2
*
* output must be distinct from the input. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs. */
static void fsquare_inner(limb *output, const limb *in) {
output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
((limb) ((s32) in[0])) * ((s32) in[2]));
output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
((limb) ((s32) in[0])) * ((s32) in[3]));
output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
((limb) ((s32) in[1])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[5]));
output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
((limb) ((s32) in[2])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[6]) +
2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
((limb) ((s32) in[2])) * ((s32) in[5]) +
((limb) ((s32) in[1])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[7]));
output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[5])));
output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
((limb) ((s32) in[3])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[8]) +
((limb) ((s32) in[0])) * ((s32) in[9]));
output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
((limb) ((s32) in[4])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[9])));
output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
((limb) ((s32) in[4])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[8]) +
((limb) ((s32) in[2])) * ((s32) in[9]));
output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[9])));
output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
((limb) ((s32) in[5])) * ((s32) in[8]) +
((limb) ((s32) in[4])) * ((s32) in[9]));
output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
((limb) ((s32) in[6])) * ((s32) in[8]) +
2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
((limb) ((s32) in[6])) * ((s32) in[9]));
output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
}
/* fsquare sets output = in^2.
*
* On entry: The |in| argument is in reduced coefficients form and |in[i]| <
* 2^27.
*
* On exit: The |output| argument is in reduced coefficients form (indeed, one
* need only provide storage for 10 limbs) and |out[i]| < 2^26. */
static void
fsquare(limb *output, const limb *in) {
limb t[19];
fsquare_inner(t, in);
/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
* 2^(27+27) and fsquare_inner adds together, at most, 14 of those
* products. */
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
static void
fexpand(limb *output, const u8 *input) {
#define F(n,start,shift,mask) \
output[n] = ((((limb) input[start + 0]) | \
((limb) input[start + 1]) << 8 | \
((limb) input[start + 2]) << 16 | \
((limb) input[start + 3]) << 24) >> shift) & mask;
F(0, 0, 0, 0x3ffffff);
F(1, 3, 2, 0x1ffffff);
F(2, 6, 3, 0x3ffffff);
F(3, 9, 5, 0x1ffffff);
F(4, 12, 6, 0x3ffffff);
F(5, 16, 0, 0x1ffffff);
F(6, 19, 1, 0x3ffffff);
F(7, 22, 3, 0x1ffffff);
F(8, 25, 4, 0x3ffffff);
F(9, 28, 6, 0x1ffffff);
#undef F
}
#if (-32 >> 1) != -16
#error "This code only works when >> does sign-extension on negative numbers"
#endif
/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
static s32 s32_eq(s32 a, s32 b) {
a = ~(a ^ b);
a &= a << 16;
a &= a << 8;
a &= a << 4;
a &= a << 2;
a &= a << 1;
return a >> 31;
}
/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
* both non-negative. */
static s32 s32_gte(s32 a, s32 b) {
a -= b;
/* a >= 0 iff a >= b. */
return ~(a >> 31);
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array.
*
* On entry: |input_limbs[i]| < 2^26 */
static void
fcontract(u8 *output, limb *input_limbs) {
int i;
int j;
s32 input[10];
s32 mask;
/* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
for (i = 0; i < 10; i++) {
input[i] = input_limbs[i];
}
for (j = 0; j < 2; ++j) {
for (i = 0; i < 9; ++i) {
if ((i & 1) == 1) {
/* This calculation is a time-invariant way to make input[i]
* non-negative by borrowing from the next-larger limb. */
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 25);
input[i] = input[i] + (carry << 25);
input[i+1] = input[i+1] - carry;
} else {
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 26);
input[i] = input[i] + (carry << 26);
input[i+1] = input[i+1] - carry;
}
}
/* There's no greater limb for input[9] to borrow from, but we can multiply
* by 19 and borrow from input[0], which is valid mod 2^255-19. */
{
const s32 mask = input[9] >> 31;
const s32 carry = -((input[9] & mask) >> 25);
input[9] = input[9] + (carry << 25);
input[0] = input[0] - (carry * 19);
}
/* After the first iteration, input[1..9] are non-negative and fit within
* 25 or 26 bits, depending on position. However, input[0] may be
* negative. */
}
/* The first borrow-propagation pass above ended with every limb
except (possibly) input[0] non-negative.
If input[0] was negative after the first pass, then it was because of a
carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
In the second pass, each limb is decreased by at most one. Thus the second
borrow-propagation pass could only have wrapped around to decrease
input[0] again if the first pass left input[0] negative *and* input[1]
through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
and this last borrow-propagation step will leave input[1] non-negative. */
{
const s32 mask = input[0] >> 31;
const s32 carry = -((input[0] & mask) >> 26);
input[0] = input[0] + (carry << 26);
input[1] = input[1] - carry;
}
/* All input[i] are now non-negative. However, there might be values between
* 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
for (j = 0; j < 2; j++) {
for (i = 0; i < 9; i++) {
if ((i & 1) == 1) {
const s32 carry = input[i] >> 25;
input[i] &= 0x1ffffff;
input[i+1] += carry;
} else {
const s32 carry = input[i] >> 26;
input[i] &= 0x3ffffff;
input[i+1] += carry;
}
}
{
const s32 carry = input[9] >> 25;
input[9] &= 0x1ffffff;
input[0] += 19*carry;
}
}
/* If the first carry-chain pass, just above, ended up with a carry from
* input[9], and that caused input[0] to be out-of-bounds, then input[0] was
* < 2^26 + 2*19, because the carry was, at most, two.
*
* If the second pass carried from input[9] again then input[0] is < 2*19 and
* the input[9] -> input[0] carry didn't push input[0] out of bounds. */
/* It still remains the case that input might be between 2^255-19 and 2^255.
* In this case, input[1..9] must take their maximum value and input[0] must
* be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
mask = s32_gte(input[0], 0x3ffffed);
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
mask &= s32_eq(input[i], 0x1ffffff);
} else {
mask &= s32_eq(input[i], 0x3ffffff);
}
}
/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
* this conditionally subtracts 2^255-19. */
input[0] -= mask & 0x3ffffed;
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
input[i] -= mask & 0x1ffffff;
} else {
input[i] -= mask & 0x3ffffff;
}
}
input[1] <<= 2;
input[2] <<= 3;
input[3] <<= 5;
input[4] <<= 6;
input[6] <<= 1;
input[7] <<= 3;
input[8] <<= 4;
input[9] <<= 6;
#define F(i, s) \
output[s+0] |= input[i] & 0xff; \
output[s+1] = (input[i] >> 8) & 0xff; \
output[s+2] = (input[i] >> 16) & 0xff; \
output[s+3] = (input[i] >> 24) & 0xff;
output[0] = 0;
output[16] = 0;
F(0,0);
F(1,3);
F(2,6);
F(3,9);
F(4,12);
F(5,16);
F(6,19);
F(7,22);
F(8,25);
F(9,28);
#undef F
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*
* On entry and exit, the absolute value of the limbs of all inputs and outputs
* are < 2^26. */
static void fmonty(limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmqp /* input Q - Q' */) {
limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
zzprime[19], zzzprime[19], xxxprime[19];
memcpy(origx, x, 10 * sizeof(limb));
fsum(x, z);
/* |x[i]| < 2^27 */
fdifference(z, origx); /* does x - z */
/* |z[i]| < 2^27 */
memcpy(origxprime, xprime, sizeof(limb) * 10);
fsum(xprime, zprime);
/* |xprime[i]| < 2^27 */
fdifference(zprime, origxprime);
/* |zprime[i]| < 2^27 */
fproduct(xxprime, xprime, z);
/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
* 2^(27+27) and fproduct adds together, at most, 14 of those products.
* (Approximating that to 2^58 doesn't work out.) */
fproduct(zzprime, x, zprime);
/* |zzprime[i]| < 14*2^54 */
freduce_degree(xxprime);
freduce_coefficients(xxprime);
/* |xxprime[i]| < 2^26 */
freduce_degree(zzprime);
freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(origxprime, xxprime, sizeof(limb) * 10);
fsum(xxprime, zzprime);
/* |xxprime[i]| < 2^27 */
fdifference(zzprime, origxprime);
/* |zzprime[i]| < 2^27 */
fsquare(xxxprime, xxprime);
/* |xxxprime[i]| < 2^26 */
fsquare(zzzprime, zzprime);
/* |zzzprime[i]| < 2^26 */
fproduct(zzprime, zzzprime, qmqp);
/* |zzprime[i]| < 14*2^52 */
freduce_degree(zzprime);
freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(x3, xxxprime, sizeof(limb) * 10);
memcpy(z3, zzprime, sizeof(limb) * 10);
fsquare(xx, x);
/* |xx[i]| < 2^26 */
fsquare(zz, z);
/* |zz[i]| < 2^26 */
fproduct(x2, xx, zz);
/* |x2[i]| < 14*2^52 */
freduce_degree(x2);
freduce_coefficients(x2);
/* |x2[i]| < 2^26 */
fdifference(zz, xx); // does zz = xx - zz
/* |zz[i]| < 2^27 */
memset(zzz + 10, 0, sizeof(limb) * 9);
fscalar_product(zzz, zz, 121665);
/* |zzz[i]| < 2^(27+17) */
/* No need to call freduce_degree here:
fscalar_product doesn't increase the degree of its input. */
freduce_coefficients(zzz);
/* |zzz[i]| < 2^26 */
fsum(zzz, xx);
/* |zzz[i]| < 2^27 */
fproduct(z2, zz, zzz);
/* |z2[i]| < 14*2^(26+27) */
freduce_degree(z2);
freduce_coefficients(z2);
/* |z2|i| < 2^26 */
}
/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
* them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
* side-channel attacks.
*
* NOTE that this function requires that 'iswap' be 1 or 0; other values give
* wrong results. Also, the two limb arrays must be in reduced-coefficient,
* reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
* and all all values in a[0..9],b[0..9] must have magnitude less than
* INT32_MAX. */
static void
swap_conditional(limb a[19], limb b[19], limb iswap) {
unsigned i;
const s32 swap = (s32) -iswap;
for (i = 0; i < 10; ++i) {
const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
a[i] = ((s32)a[i]) ^ x;
b[i] = ((s32)b[i]) ^ x;
}
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form) */
static void
cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
unsigned i, j;
memcpy(nqpqx, q, sizeof(limb) * 10);
for (i = 0; i < 32; ++i) {
u8 byte = n[31 - i];
for (j = 0; j < 8; ++j) {
const limb bit = byte >> 7;
swap_conditional(nqx, nqpqx, bit);
swap_conditional(nqz, nqpqz, bit);
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q);
swap_conditional(nqx2, nqpqx2, bit);
swap_conditional(nqz2, nqpqz2, bit);
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
byte <<= 1;
}
}
memcpy(resultx, nqx, sizeof(limb) * 10);
memcpy(resultz, nqz, sizeof(limb) * 10);
}
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code
// -----------------------------------------------------------------------------
static void
crecip(limb *out, const limb *z) {
limb z2[10];
limb z9[10];
limb z11[10];
limb z2_5_0[10];
limb z2_10_0[10];
limb z2_20_0[10];
limb z2_50_0[10];
limb z2_100_0[10];
limb t0[10];
limb t1[10];
int i;
/* 2 */ fsquare(z2,z);
/* 4 */ fsquare(t1,z2);
/* 8 */ fsquare(t0,t1);
/* 9 */ fmul(z9,t0,z);
/* 11 */ fmul(z11,z9,z2);
/* 22 */ fsquare(t0,z11);
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
/* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
/* 2^7 - 2^2 */ fsquare(t1,t0);
/* 2^8 - 2^3 */ fsquare(t0,t1);
/* 2^9 - 2^4 */ fsquare(t1,t0);
/* 2^10 - 2^5 */ fsquare(t0,t1);
/* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
/* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
/* 2^12 - 2^2 */ fsquare(t1,t0);
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
/* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
/* 2^22 - 2^2 */ fsquare(t1,t0);
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
/* 2^41 - 2^1 */ fsquare(t1,t0);
/* 2^42 - 2^2 */ fsquare(t0,t1);
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
/* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
/* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
/* 2^52 - 2^2 */ fsquare(t1,t0);
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
/* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
/* 2^102 - 2^2 */ fsquare(t0,t1);
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
/* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
/* 2^201 - 2^1 */ fsquare(t0,t1);
/* 2^202 - 2^2 */ fsquare(t1,t0);
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
/* 2^251 - 2^1 */ fsquare(t1,t0);
/* 2^252 - 2^2 */ fsquare(t0,t1);
/* 2^253 - 2^3 */ fsquare(t1,t0);
/* 2^254 - 2^4 */ fsquare(t0,t1);
/* 2^255 - 2^5 */ fsquare(t1,t0);
/* 2^255 - 21 */ fmul(out,t1,z11);
}
int
curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
limb bp[10], x[10], z[11], zmone[10];
uint8_t e[32];
int i;
for (i = 0; i < 32; ++i) e[i] = secret[i];
// e[0] &= 248;
// e[31] &= 127;
// e[31] |= 64;
fexpand(bp, basepoint);
cmult(x, z, e, bp);
crecip(zmone, z);
fmul(z, x, zmone);
fcontract(mypublic, z);
return 0;
}

View file

@ -0,0 +1,6 @@
#ifndef CURVE25519_DONNA_H
#define CURVE25519_DONNA_H
extern int curve25519_donna(uint8_t *, const uint8_t *, const uint8_t *);
#endif

View file

@ -0,0 +1,44 @@
#include <string.h>
#include "compare.h"
/* Const-time comparison from SUPERCOP, but here it's only used for
signature verification, so doesn't need to be const-time. But
copied the nacl version anyways. */
int crypto_verify_32_ref(const unsigned char *x, const unsigned char *y)
{
unsigned int differentbits = 0;
#define F(i) differentbits |= x[i] ^ y[i];
F(0)
F(1)
F(2)
F(3)
F(4)
F(5)
F(6)
F(7)
F(8)
F(9)
F(10)
F(11)
F(12)
F(13)
F(14)
F(15)
F(16)
F(17)
F(18)
F(19)
F(20)
F(21)
F(22)
F(23)
F(24)
F(25)
F(26)
F(27)
F(28)
F(29)
F(30)
F(31)
return (1 & ((differentbits - 1) >> 8)) - 1;
}

View file

@ -0,0 +1,6 @@
#ifndef __COMPARE_H__
#define __COMPARE_H__
int crypto_verify_32_ref(const unsigned char *b1, const unsigned char *b2);
#endif

View file

@ -0,0 +1,45 @@
#ifndef __CRYPTO_ADDITIONS__
#define __CRYPTO_ADDITIONS__
#include "crypto_uint32.h"
#include "fe.h"
#include "ge.h"
#define MAX_MSG_LEN 256
void sc_neg(unsigned char *b, const unsigned char *a);
void sc_cmov(unsigned char* f, const unsigned char* g, unsigned char b);
int fe_isequal(const fe f, const fe g);
int fe_isreduced(const unsigned char* s);
void fe_mont_rhs(fe v2, const fe u);
void fe_montx_to_edy(fe y, const fe u);
void fe_sqrt(fe b, const fe a);
int ge_isneutral(const ge_p3* q);
void ge_neg(ge_p3* r, const ge_p3 *p);
void ge_montx_to_p3(ge_p3* p, const fe u, const unsigned char ed_sign_bit);
void ge_p3_to_montx(fe u, const ge_p3 *p);
void ge_scalarmult(ge_p3 *h, const unsigned char *a, const ge_p3 *A);
void ge_scalarmult_cofactor(ge_p3 *q, const ge_p3 *p);
void elligator(fe u, const fe r);
void hash_to_point(ge_p3* p, const unsigned char* msg, const unsigned long in_len);
int crypto_sign_modified(
unsigned char *sm,
const unsigned char *m,unsigned long long mlen,
const unsigned char *sk, /* Curve/Ed25519 private key */
const unsigned char *pk, /* Ed25519 public key */
const unsigned char *random /* 64 bytes random to hash into nonce */
);
int crypto_sign_open_modified(
unsigned char *m,
const unsigned char *sm,unsigned long long smlen,
const unsigned char *pk
);
#endif

View file

@ -0,0 +1,6 @@
#ifndef crypto_hash_sha512_H
#define crypto_hash_sha512_H
extern int crypto_hash_sha512(unsigned char *,const unsigned char *,unsigned long long);
#endif

View file

@ -0,0 +1,102 @@
#include <stdlib.h>
#include <string.h>
#include "../ge.h"
#include "curve_sigs.h"
#include "crypto_sign.h"
#include "crypto_additions.h"
int curve25519_sign(unsigned char* signature_out,
const unsigned char* curve25519_privkey,
const unsigned char* msg, const unsigned long msg_len,
const unsigned char* random)
{
ge_p3 ed_pubkey_point; /* Ed25519 pubkey point */
unsigned char ed_pubkey[32]; /* Ed25519 encoded pubkey */
unsigned char *sigbuf; /* working buffer */
unsigned char sign_bit = 0;
if ((sigbuf = malloc(msg_len + 128)) == 0) {
memset(signature_out, 0, 64);
return -1;
}
/* Convert the Curve25519 privkey to an Ed25519 public key */
ge_scalarmult_base(&ed_pubkey_point, curve25519_privkey);
ge_p3_tobytes(ed_pubkey, &ed_pubkey_point);
sign_bit = ed_pubkey[31] & 0x80;
/* Perform an Ed25519 signature with explicit private key */
crypto_sign_modified(sigbuf, msg, msg_len, curve25519_privkey,
ed_pubkey, random);
memmove(signature_out, sigbuf, 64);
/* Encode the sign bit into signature (in unused high bit of S) */
signature_out[63] &= 0x7F; /* bit should be zero already, but just in case */
signature_out[63] |= sign_bit;
free(sigbuf);
return 0;
}
int curve25519_verify(const unsigned char* signature,
const unsigned char* curve25519_pubkey,
const unsigned char* msg, const unsigned long msg_len)
{
fe u;
fe y;
unsigned char ed_pubkey[32];
unsigned char *verifybuf = NULL; /* working buffer */
unsigned char *verifybuf2 = NULL; /* working buffer #2 */
int result;
if ((verifybuf = malloc(msg_len + 64)) == 0) {
result = -1;
goto err;
}
if ((verifybuf2 = malloc(msg_len + 64)) == 0) {
result = -1;
goto err;
}
/* Convert the Curve25519 public key into an Ed25519 public key. In
particular, convert Curve25519's "montgomery" x-coordinate (u) into an
Ed25519 "edwards" y-coordinate:
y = (u - 1) / (u + 1)
NOTE: u=-1 is converted to y=0 since fe_invert is mod-exp
Then move the sign bit into the pubkey from the signature.
*/
fe_frombytes(u, curve25519_pubkey);
fe_montx_to_edy(y, u);
fe_tobytes(ed_pubkey, y);
/* Copy the sign bit, and remove it from signature */
ed_pubkey[31] &= 0x7F; /* bit should be zero already, but just in case */
ed_pubkey[31] |= (signature[63] & 0x80);
memmove(verifybuf, signature, 64);
verifybuf[63] &= 0x7F;
memmove(verifybuf+64, msg, msg_len);
/* Then perform a normal Ed25519 verification, return 0 on success */
/* The below call has a strange API: */
/* verifybuf = R || S || message */
/* verifybuf2 = internal to next call gets a copy of verifybuf, S gets
replaced with pubkey for hashing */
result = crypto_sign_open_modified(verifybuf2, verifybuf, 64 + msg_len, ed_pubkey);
err:
if (verifybuf != NULL) {
free(verifybuf);
}
if (verifybuf2 != NULL) {
free(verifybuf2);
}
return result;
}

View file

@ -0,0 +1,17 @@
#ifndef __CURVE_SIGS_H__
#define __CURVE_SIGS_H__
/* returns 0 on success */
int curve25519_sign(unsigned char* signature_out, /* 64 bytes */
const unsigned char* curve25519_privkey, /* 32 bytes */
const unsigned char* msg, const unsigned long msg_len, /* <= 256 bytes */
const unsigned char* random); /* 64 bytes */
/* returns 0 on success */
int curve25519_verify(const unsigned char* signature, /* 64 bytes */
const unsigned char* curve25519_pubkey, /* 32 bytes */
const unsigned char* msg, const unsigned long msg_len); /* <= 256 bytes */
#endif

View file

@ -0,0 +1,80 @@
#include <string.h>
#include "fe.h"
#include "ge.h"
#include "crypto_uint32.h"
#include "crypto_hash_sha512.h"
#include "crypto_additions.h"
unsigned int legendre_is_nonsquare(fe in)
{
fe temp;
unsigned char bytes[32];
fe_pow22523(temp, in); /* temp = in^((q-5)/8) */
fe_sq(temp, temp); /* in^((q-5)/4) */
fe_sq(temp, temp); /* in^((q-5)/2) */
fe_mul(temp, temp, in); /* in^((q-3)/2) */
fe_mul(temp, temp, in); /* in^((q-1)/2) */
/* temp is now the Legendre symbol:
* 1 = square
* 0 = input is zero
* -1 = nonsquare
*/
fe_tobytes(bytes, temp);
return 1 & bytes[31];
}
void elligator(fe u, const fe r)
{
/* r = input
* x = -A/(1+2r^2) # 2 is nonsquare
* e = (x^3 + Ax^2 + x)^((q-1)/2) # legendre symbol
* if e == 1 (square) or e == 0 (because x == 0 and 2r^2 + 1 == 0)
* u = x
* if e == -1 (nonsquare)
* u = -x - A
*/
fe A, one, twor2, twor2plus1, twor2plus1inv;
fe x, e, Atemp, uneg;
unsigned int nonsquare;
fe_1(one);
fe_0(A);
A[0] = 486662; /* A = 486662 */
fe_sq2(twor2, r); /* 2r^2 */
fe_add(twor2plus1, twor2, one); /* 1+2r^2 */
fe_invert(twor2plus1inv, twor2plus1); /* 1/(1+2r^2) */
fe_mul(x, twor2plus1inv, A); /* A/(1+2r^2) */
fe_neg(x, x); /* x = -A/(1+2r^2) */
fe_mont_rhs(e, x); /* e = x^3 + Ax^2 + x */
nonsquare = legendre_is_nonsquare(e);
fe_0(Atemp);
fe_cmov(Atemp, A, nonsquare); /* 0, or A if nonsquare */
fe_add(u, x, Atemp); /* x, or x+A if nonsquare */
fe_neg(uneg, u); /* -x, or -x-A if nonsquare */
fe_cmov(u, uneg, nonsquare); /* x, or -x-A if nonsquare */
}
void hash_to_point(ge_p3* p, const unsigned char* in, const unsigned long in_len)
{
unsigned char hash[64];
fe h, u;
unsigned char sign_bit;
ge_p3 p3;
crypto_hash_sha512(hash, in, in_len);
/* take the high bit as Edwards sign bit */
sign_bit = (hash[31] & 0x80) >> 7;
hash[31] &= 0x7F;
fe_frombytes(h, hash);
elligator(u, h);
ge_montx_to_p3(&p3, u, sign_bit);
ge_scalarmult_cofactor(p, &p3);
}

View file

@ -0,0 +1,14 @@
#include "fe.h"
#include "crypto_verify_32.h"
/*
return 1 if f == g
return 0 if f != g
*/
int fe_isequal(const fe f, const fe g)
{
fe h;
fe_sub(h, f, g);
return 1 ^ (1 & (fe_isnonzero(h) >> 8));
}

View file

@ -0,0 +1,14 @@
#include "fe.h"
#include "crypto_verify_32.h"
int fe_isreduced(const unsigned char* s)
{
fe f;
unsigned char strict[32];
fe_frombytes(f, s);
fe_tobytes(strict, f);
if (crypto_verify_32(strict, s) != 0)
return 0;
return 1;
}

View file

@ -0,0 +1,17 @@
#include "fe.h"
void fe_mont_rhs(fe v2, fe u) {
fe A, one;
fe u2, Au, inner;
fe_1(one);
fe_0(A);
A[0] = 486662; /* A = 486662 */
fe_sq(u2, u); /* u^2 */
fe_mul(Au, A, u); /* Au */
fe_add(inner, u2, Au); /* u^2 + Au */
fe_add(inner, inner, one); /* u^2 + Au + 1 */
fe_mul(v2, u, inner); /* u(u^2 + Au + 1) */
}

View file

@ -0,0 +1,19 @@
#include "fe.h"
#include "crypto_additions.h"
void fe_montx_to_edy(fe y, const fe u)
{
/*
y = (u - 1) / (u + 1)
NOTE: u=-1 is converted to y=0 since fe_invert is mod-exp
*/
fe one, um1, up1;
fe_1(one);
fe_sub(um1, u, one);
fe_add(up1, u, one);
fe_invert(up1, up1);
fe_mul(y, um1, up1);
}

View file

@ -0,0 +1,51 @@
#include <assert.h>
#include "fe.h"
#include "crypto_additions.h"
/* sqrt(-1) */
static unsigned char i_bytes[32] = {
0xb0, 0xa0, 0x0e, 0x4a, 0x27, 0x1b, 0xee, 0xc4,
0x78, 0xe4, 0x2f, 0xad, 0x06, 0x18, 0x43, 0x2f,
0xa7, 0xd7, 0xfb, 0x3d, 0x99, 0x00, 0x4d, 0x2b,
0x0b, 0xdf, 0xc1, 0x4f, 0x80, 0x24, 0x83, 0x2b
};
/* Preconditions: a is square or zero */
void fe_sqrt(fe out, const fe a)
{
fe exp, b, b2, bi, i;
#ifndef NDEBUG
fe legendre, zero, one;
#endif
fe_frombytes(i, i_bytes);
fe_pow22523(exp, a); /* b = a^(q-5)/8 */
/* PRECONDITION: legendre symbol == 1 (square) or 0 (a == zero) */
#ifndef NDEBUG
fe_sq(legendre, exp); /* in^((q-5)/4) */
fe_sq(legendre, legendre); /* in^((q-5)/2) */
fe_mul(legendre, legendre, a); /* in^((q-3)/2) */
fe_mul(legendre, legendre, a); /* in^((q-1)/2) */
fe_0(zero);
fe_1(one);
assert(fe_isequal(legendre, zero) || fe_isequal(legendre, one));
#endif
fe_mul(b, a, exp); /* b = a * a^(q-5)/8 */
fe_sq(b2, b); /* b^2 = a * a^(q-1)/4 */
/* note b^4 == a^2, so b^2 == a or -a
* if b^2 != a, multiply it by sqrt(-1) */
fe_mul(bi, b, i);
fe_cmov(b, bi, 1 ^ fe_isequal(b2, a));
fe_copy(out, b);
/* PRECONDITION: out^2 == a */
#ifndef NDEBUG
fe_sq(b2, out);
assert(fe_isequal(a, b2));
#endif
}

View file

@ -0,0 +1,16 @@
#include "crypto_additions.h"
#include "ge.h"
/*
return 1 if p is the neutral point
return 0 otherwise
*/
int ge_isneutral(const ge_p3 *p)
{
fe zero;
fe_0(zero);
/* Check if p == neutral element == (0, 1) */
return (fe_isequal(p->X, zero) & fe_isequal(p->Y, p->Z));
}

View file

@ -0,0 +1,70 @@
#include "fe.h"
#include "ge.h"
#include "assert.h"
#include "crypto_additions.h"
#include "utility.h"
/* sqrt(-(A+2)) */
static unsigned char A_bytes[32] = {
0x06, 0x7e, 0x45, 0xff, 0xaa, 0x04, 0x6e, 0xcc,
0x82, 0x1a, 0x7d, 0x4b, 0xd1, 0xd3, 0xa1, 0xc5,
0x7e, 0x4f, 0xfc, 0x03, 0xdc, 0x08, 0x7b, 0xd2,
0xbb, 0x06, 0xa0, 0x60, 0xf4, 0xed, 0x26, 0x0f
};
void ge_montx_to_p3(ge_p3* p, const fe u, const unsigned char ed_sign_bit)
{
fe x, y, A, v, v2, iv, nx;
fe_frombytes(A, A_bytes);
/* given u, recover edwards y */
/* given u, recover v */
/* given u and v, recover edwards x */
fe_montx_to_edy(y, u); /* y = (u - 1) / (u + 1) */
fe_mont_rhs(v2, u); /* v^2 = u(u^2 + Au + 1) */
fe_sqrt(v, v2); /* v = sqrt(v^2) */
fe_mul(x, u, A); /* x = u * sqrt(-(A+2)) */
fe_invert(iv, v); /* 1/v */
fe_mul(x, x, iv); /* x = (u/v) * sqrt(-(A+2)) */
fe_neg(nx, x); /* negate x to match sign bit */
fe_cmov(x, nx, fe_isnegative(x) ^ ed_sign_bit);
fe_copy(p->X, x);
fe_copy(p->Y, y);
fe_1(p->Z);
fe_mul(p->T, p->X, p->Y);
/* POSTCONDITION: check that p->X and p->Y satisfy the Ed curve equation */
/* -x^2 + y^2 = 1 + dx^2y^2 */
#ifndef NDEBUG
{
fe one, d, x2, y2, x2y2, dx2y2;
unsigned char dbytes[32] = {
0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52
};
fe_frombytes(d, dbytes);
fe_1(one);
fe_sq(x2, p->X); /* x^2 */
fe_sq(y2, p->Y); /* y^2 */
fe_mul(dx2y2, x2, y2); /* x^2y^2 */
fe_mul(dx2y2, dx2y2, d); /* dx^2y^2 */
fe_add(dx2y2, dx2y2, one); /* dx^2y^2 + 1 */
fe_neg(x2y2, x2); /* -x^2 */
fe_add(x2y2, x2y2, y2); /* -x^2 + y^2 */
assert(fe_isequal(x2y2, dx2y2));
}
#endif
}

View file

@ -0,0 +1,15 @@
#include "crypto_additions.h"
#include "ge.h"
/*
return r = -p
*/
void ge_neg(ge_p3* r, const ge_p3 *p)
{
fe_neg(r->X, p->X);
fe_copy(r->Y, p->Y);
fe_copy(r->Z, p->Z);
fe_neg(r->T, p->T);
}

View file

@ -0,0 +1,21 @@
#include "fe.h"
#include "crypto_additions.h"
void ge_p3_to_montx(fe u, const ge_p3 *ed)
{
/*
u = (y + 1) / (1 - y)
or
u = (y + z) / (z - y)
NOTE: y=1 is converted to u=0 since fe_invert is mod-exp
*/
fe y_plus_one, one_minus_y, inv_one_minus_y;
fe_add(y_plus_one, ed->Y, ed->Z);
fe_sub(one_minus_y, ed->Z, ed->Y);
fe_invert(inv_one_minus_y, one_minus_y);
fe_mul(u, y_plus_one, inv_one_minus_y);
}

View file

@ -0,0 +1,140 @@
#include "crypto_uint32.h"
#include "ge.h"
#include "crypto_additions.h"
static unsigned char equal(signed char b,signed char c)
{
unsigned char ub = b;
unsigned char uc = c;
unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */
crypto_uint32 y = x; /* 0: yes; 1..255: no */
y -= 1; /* 4294967295: yes; 0..254: no */
y >>= 31; /* 1: yes; 0: no */
return y;
}
static unsigned char negative(signed char b)
{
unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */
x >>= 63; /* 1: yes; 0: no */
return x;
}
static void cmov(ge_cached *t,const ge_cached *u,unsigned char b)
{
fe_cmov(t->YplusX,u->YplusX,b);
fe_cmov(t->YminusX,u->YminusX,b);
fe_cmov(t->Z,u->Z,b);
fe_cmov(t->T2d,u->T2d,b);
}
static void select(ge_cached *t,const ge_cached *pre, signed char b)
{
ge_cached minust;
unsigned char bnegative = negative(b);
unsigned char babs = b - (((-bnegative) & b) << 1);
fe_1(t->YplusX);
fe_1(t->YminusX);
fe_1(t->Z);
fe_0(t->T2d);
cmov(t,pre+0,equal(babs,1));
cmov(t,pre+1,equal(babs,2));
cmov(t,pre+2,equal(babs,3));
cmov(t,pre+3,equal(babs,4));
cmov(t,pre+4,equal(babs,5));
cmov(t,pre+5,equal(babs,6));
cmov(t,pre+6,equal(babs,7));
cmov(t,pre+7,equal(babs,8));
fe_copy(minust.YplusX,t->YminusX);
fe_copy(minust.YminusX,t->YplusX);
fe_copy(minust.Z,t->Z);
fe_neg(minust.T2d,t->T2d);
cmov(t,&minust,bnegative);
}
/*
h = a * B
where a = a[0]+256*a[1]+...+256^31 a[31]
B is the Ed25519 base point (x,4/5) with x positive.
Preconditions:
a[31] <= 127
*/
void ge_scalarmult(ge_p3 *h, const unsigned char *a, const ge_p3 *A)
{
signed char e[64];
signed char carry;
ge_p1p1 r;
ge_p2 s;
ge_p3 t0, t1, t2;
ge_cached t, pre[8];
int i;
for (i = 0;i < 32;++i) {
e[2 * i + 0] = (a[i] >> 0) & 15;
e[2 * i + 1] = (a[i] >> 4) & 15;
}
/* each e[i] is between 0 and 15 */
/* e[63] is between 0 and 7 */
carry = 0;
for (i = 0;i < 63;++i) {
e[i] += carry;
carry = e[i] + 8;
carry >>= 4;
e[i] -= carry << 4;
}
e[63] += carry;
/* each e[i] is between -8 and 8 */
// Precomputation:
ge_p3_to_cached(pre+0, A); // A
ge_p3_dbl(&r, A);
ge_p1p1_to_p3(&t0, &r);
ge_p3_to_cached(pre+1, &t0); // 2A
ge_add(&r, A, pre+1);
ge_p1p1_to_p3(&t1, &r);
ge_p3_to_cached(pre+2, &t1); // 3A
ge_p3_dbl(&r, &t0);
ge_p1p1_to_p3(&t0, &r);
ge_p3_to_cached(pre+3, &t0); // 4A
ge_add(&r, A, pre+3);
ge_p1p1_to_p3(&t2, &r);
ge_p3_to_cached(pre+4, &t2); // 5A
ge_p3_dbl(&r, &t1);
ge_p1p1_to_p3(&t1, &r);
ge_p3_to_cached(pre+5, &t1); // 6A
ge_add(&r, A, pre+5);
ge_p1p1_to_p3(&t1, &r);
ge_p3_to_cached(pre+6, &t1); // 7A
ge_p3_dbl(&r, &t0);
ge_p1p1_to_p3(&t0, &r);
ge_p3_to_cached(pre+7, &t0); // 8A
ge_p3_0(h);
for (i = 63;i > 0; i--) {
select(&t,pre,e[i]);
ge_add(&r, h, &t);
ge_p1p1_to_p2(&s,&r);
ge_p2_dbl(&r,&s); ge_p1p1_to_p2(&s,&r);
ge_p2_dbl(&r,&s); ge_p1p1_to_p2(&s,&r);
ge_p2_dbl(&r,&s); ge_p1p1_to_p2(&s,&r);
ge_p2_dbl(&r,&s); ge_p1p1_to_p3(h,&r);
}
select(&t,pre,e[0]);
ge_add(&r, h, &t);
ge_p1p1_to_p3(h,&r);
}

View file

@ -0,0 +1,21 @@
#include "crypto_additions.h"
#include "ge.h"
/*
return 8 * p
*/
void ge_scalarmult_cofactor(ge_p3 *q, const ge_p3 *p)
{
ge_p1p1 p1p1;
ge_p2 p2;
ge_p3_dbl(&p1p1, p);
ge_p1p1_to_p2(&p2, &p1p1);
ge_p2_dbl(&p1p1, &p2);
ge_p1p1_to_p2(&p2, &p1p1);
ge_p2_dbl(&p1p1, &p2);
ge_p1p1_to_p3(q, &p1p1);
}

View file

@ -0,0 +1,15 @@
#include "ge.h"
/*
r = p + q
*/
void ge_p3_add(ge_p3 *r, const ge_p3 *p, const ge_p3 *q)
{
ge_cached p_cached;
ge_p1p1 r_p1p1;
ge_p3_to_cached(&p_cached, p);
ge_add(&r_p1p1, q, &p_cached);
ge_p1p1_to_p3(r, &r_p1p1);
}

View file

@ -0,0 +1,19 @@
#ifndef _GEN_CONSTANTS_H__
#define _GEN_CONSTANTS_H__
#define LABELSETMAXLEN 512
#define LABELMAXLEN 128
#define BUFLEN 1024
#define BLOCKLEN 128 /* SHA512 */
#define HASHLEN 64 /* SHA512 */
#define POINTLEN 32
#define SCALARLEN 32
#define RANDLEN 32
#define SIGNATURELEN 64
#define VRFSIGNATURELEN 96
#define VRFOUTPUTLEN 32
#define MSTART 2048
#define MSGMAXLEN 1048576
#endif

View file

@ -0,0 +1,16 @@
#ifndef __GEN_CRYPTO_ADDITIONS__
#define __GEN_CRYPTO_ADDITIONS__
#include "crypto_uint32.h"
#include "fe.h"
#include "ge.h"
int sc_isreduced(const unsigned char* s);
int point_isreduced(const unsigned char* p);
void ge_p3_add(ge_p3 *r, const ge_p3 *p, const ge_p3 *q);
#endif

View file

@ -0,0 +1,349 @@
#include <string.h>
#include "gen_eddsa.h"
#include "gen_labelset.h"
#include "gen_constants.h"
#include "gen_crypto_additions.h"
#include "crypto_hash_sha512.h"
#include "crypto_verify_32.h"
#include "zeroize.h"
#include "ge.h"
#include "sc.h"
#include "crypto_additions.h"
#include "utility.h"
/* B: base point
* R: commitment (point),
r: private nonce (scalar)
K: encoded public key
k: private key (scalar)
Z: 32-bytes random
M: buffer containing message, message starts at M_start, continues for M_len
r = hash(B || labelset || Z || pad1 || k || pad2 || labelset || K || extra || M) (mod q)
*/
int generalized_commit(unsigned char* R_bytes, unsigned char* r_scalar,
const unsigned char* labelset, const unsigned long labelset_len,
const unsigned char* extra, const unsigned long extra_len,
const unsigned char* K_bytes, const unsigned char* k_scalar,
const unsigned char* Z,
unsigned char* M_buf, const unsigned long M_start, const unsigned long M_len)
{
ge_p3 R_point;
unsigned char hash[HASHLEN];
unsigned char* bufstart = NULL;
unsigned char* bufptr = NULL;
unsigned char* bufend = NULL;
unsigned long prefix_len = 0;
if (labelset_validate(labelset, labelset_len) != 0)
goto err;
if (R_bytes == NULL || r_scalar == NULL ||
K_bytes == NULL || k_scalar == NULL ||
Z == NULL || M_buf == NULL)
goto err;
if (extra == NULL && extra_len != 0)
goto err;
if (extra != NULL && extra_len == 0)
goto err;
if (extra != NULL && labelset_is_empty(labelset, labelset_len))
goto err;
if (HASHLEN != 64)
goto err;
prefix_len = 0;
prefix_len += POINTLEN + labelset_len + RANDLEN;
prefix_len += ((BLOCKLEN - (prefix_len % BLOCKLEN)) % BLOCKLEN);
prefix_len += SCALARLEN;
prefix_len += ((BLOCKLEN - (prefix_len % BLOCKLEN)) % BLOCKLEN);
prefix_len += labelset_len + POINTLEN + extra_len;
if (prefix_len > M_start)
goto err;
bufstart = M_buf + M_start - prefix_len;
bufptr = bufstart;
bufend = M_buf + M_start;
bufptr = buffer_add(bufptr, bufend, B_bytes, POINTLEN);
bufptr = buffer_add(bufptr, bufend, labelset, labelset_len);
bufptr = buffer_add(bufptr, bufend, Z, RANDLEN);
bufptr = buffer_pad(bufstart, bufptr, bufend);
bufptr = buffer_add(bufptr, bufend, k_scalar, SCALARLEN);
bufptr = buffer_pad(bufstart, bufptr, bufend);
bufptr = buffer_add(bufptr, bufend, labelset, labelset_len);
bufptr = buffer_add(bufptr, bufend, K_bytes, POINTLEN);
bufptr = buffer_add(bufptr, bufend, extra, extra_len);
if (bufptr != bufend || bufptr != M_buf + M_start || bufptr - bufstart != prefix_len)
goto err;
crypto_hash_sha512(hash, M_buf + M_start - prefix_len, prefix_len + M_len);
sc_reduce(hash);
ge_scalarmult_base(&R_point, hash);
ge_p3_tobytes(R_bytes, &R_point);
memcpy(r_scalar, hash, SCALARLEN);
zeroize(hash, HASHLEN);
zeroize(bufstart, prefix_len);
return 0;
err:
zeroize(hash, HASHLEN);
zeroize(M_buf, M_start);
return -1;
}
/* if is_labelset_empty(labelset):
return hash(R || K || M) (mod q)
else:
return hash(B || labelset || R || labelset || K || extra || M) (mod q)
*/
int generalized_challenge(unsigned char* h_scalar,
const unsigned char* labelset, const unsigned long labelset_len,
const unsigned char* extra, const unsigned long extra_len,
const unsigned char* R_bytes,
const unsigned char* K_bytes,
unsigned char* M_buf, const unsigned long M_start, const unsigned long M_len)
{
unsigned char hash[HASHLEN];
unsigned char* bufstart = NULL;
unsigned char* bufptr = NULL;
unsigned char* bufend = NULL;
unsigned long prefix_len = 0;
if (h_scalar == NULL)
goto err;
memset(h_scalar, 0, SCALARLEN);
if (labelset_validate(labelset, labelset_len) != 0)
goto err;
if (R_bytes == NULL || K_bytes == NULL || M_buf == NULL)
goto err;
if (extra == NULL && extra_len != 0)
goto err;
if (extra != NULL && extra_len == 0)
goto err;
if (extra != NULL && labelset_is_empty(labelset, labelset_len))
goto err;
if (HASHLEN != 64)
goto err;
if (labelset_is_empty(labelset, labelset_len)) {
if (2*POINTLEN > M_start)
goto err;
if (extra != NULL || extra_len != 0)
goto err;
memcpy(M_buf + M_start - (2*POINTLEN), R_bytes, POINTLEN);
memcpy(M_buf + M_start - (1*POINTLEN), K_bytes, POINTLEN);
prefix_len = 2*POINTLEN;
} else {
prefix_len = 3*POINTLEN + 2*labelset_len + extra_len;
if (prefix_len > M_start)
goto err;
bufstart = M_buf + M_start - prefix_len;
bufptr = bufstart;
bufend = M_buf + M_start;
bufptr = buffer_add(bufptr, bufend, B_bytes, POINTLEN);
bufptr = buffer_add(bufptr, bufend, labelset, labelset_len);
bufptr = buffer_add(bufptr, bufend, R_bytes, POINTLEN);
bufptr = buffer_add(bufptr, bufend, labelset, labelset_len);
bufptr = buffer_add(bufptr, bufend, K_bytes, POINTLEN);
bufptr = buffer_add(bufptr, bufend, extra, extra_len);
if (bufptr == NULL)
goto err;
if (bufptr != bufend || bufptr != M_buf + M_start || bufptr - bufstart != prefix_len)
goto err;
}
crypto_hash_sha512(hash, M_buf + M_start - prefix_len, prefix_len + M_len);
sc_reduce(hash);
memcpy(h_scalar, hash, SCALARLEN);
return 0;
err:
return -1;
}
/* return r + kh (mod q) */
int generalized_prove(unsigned char* out_scalar,
const unsigned char* r_scalar, const unsigned char* k_scalar, const unsigned char* h_scalar)
{
sc_muladd(out_scalar, h_scalar, k_scalar, r_scalar);
zeroize_stack();
return 0;
}
/* R = s*B - h*K */
int generalized_solve_commitment(unsigned char* R_bytes_out, ge_p3* K_point_out,
const ge_p3* B_point, const unsigned char* s_scalar,
const unsigned char* K_bytes, const unsigned char* h_scalar)
{
ge_p3 Kneg_point;
ge_p2 R_calc_point_p2;
ge_p3 sB;
ge_p3 hK;
ge_p3 R_calc_point_p3;
if (ge_frombytes_negate_vartime(&Kneg_point, K_bytes) != 0)
return -1;
if (B_point == NULL) {
ge_double_scalarmult_vartime(&R_calc_point_p2, h_scalar, &Kneg_point, s_scalar);
ge_tobytes(R_bytes_out, &R_calc_point_p2);
}
else {
// s * Bv
ge_scalarmult(&sB, s_scalar, B_point);
// h * -K
ge_scalarmult(&hK, h_scalar, &Kneg_point);
// R = sB - hK
ge_p3_add(&R_calc_point_p3, &sB, &hK);
ge_p3_tobytes(R_bytes_out, &R_calc_point_p3);
}
if (K_point_out) {
ge_neg(K_point_out, &Kneg_point);
}
return 0;
}
int generalized_eddsa_25519_sign(
unsigned char* signature_out,
const unsigned char* eddsa_25519_pubkey_bytes,
const unsigned char* eddsa_25519_privkey_scalar,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* random,
const unsigned char* customization_label,
const unsigned long customization_label_len)
{
unsigned char labelset[LABELSETMAXLEN];
unsigned long labelset_len = 0;
unsigned char R_bytes[POINTLEN];
unsigned char r_scalar[SCALARLEN];
unsigned char h_scalar[SCALARLEN];
unsigned char s_scalar[SCALARLEN];
unsigned char* M_buf = NULL;
if (signature_out == NULL)
goto err;
memset(signature_out, 0, SIGNATURELEN);
if (eddsa_25519_pubkey_bytes == NULL)
goto err;
if (eddsa_25519_privkey_scalar == NULL)
goto err;
if (msg == NULL)
goto err;
if (customization_label == NULL && customization_label_len != 0)
goto err;
if (customization_label_len > LABELMAXLEN)
goto err;
if (msg_len > MSGMAXLEN)
goto err;
if ((M_buf = malloc(msg_len + MSTART)) == 0)
goto err;
memcpy(M_buf + MSTART, msg, msg_len);
if (labelset_new(labelset, &labelset_len, LABELSETMAXLEN, NULL, 0,
customization_label, customization_label_len) != 0)
goto err;
if (generalized_commit(R_bytes, r_scalar, labelset, labelset_len, NULL, 0,
eddsa_25519_pubkey_bytes, eddsa_25519_privkey_scalar,
random, M_buf, MSTART, msg_len) != 0)
goto err;
if (generalized_challenge(h_scalar, labelset, labelset_len, NULL, 0,
R_bytes, eddsa_25519_pubkey_bytes, M_buf, MSTART, msg_len) != 0)
goto err;
if (generalized_prove(s_scalar, r_scalar, eddsa_25519_privkey_scalar, h_scalar) != 0)
goto err;
memcpy(signature_out, R_bytes, POINTLEN);
memcpy(signature_out + POINTLEN, s_scalar, SCALARLEN);
zeroize(r_scalar, SCALARLEN);
zeroize_stack();
free(M_buf);
return 0;
err:
zeroize(r_scalar, SCALARLEN);
zeroize_stack();
free(M_buf);
return -1;
}
int generalized_eddsa_25519_verify(
const unsigned char* signature,
const unsigned char* eddsa_25519_pubkey_bytes,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* customization_label,
const unsigned long customization_label_len)
{
unsigned char labelset[LABELSETMAXLEN];
unsigned long labelset_len = 0;
const unsigned char* R_bytes = NULL;
const unsigned char* s_scalar = NULL;
unsigned char h_scalar[SCALARLEN];
unsigned char* M_buf = NULL;
unsigned char R_calc_bytes[POINTLEN];
if (signature == NULL)
goto err;
if (eddsa_25519_pubkey_bytes == NULL)
goto err;
if (msg == NULL)
goto err;
if (customization_label == NULL && customization_label_len != 0)
goto err;
if (customization_label_len > LABELMAXLEN)
goto err;
if (msg_len > MSGMAXLEN)
goto err;
if ((M_buf = malloc(msg_len + MSTART)) == 0)
goto err;
memcpy(M_buf + MSTART, msg, msg_len);
if (labelset_new(labelset, &labelset_len, LABELSETMAXLEN, NULL, 0,
customization_label, customization_label_len) != 0)
goto err;
R_bytes = signature;
s_scalar = signature + POINTLEN;
if (!point_isreduced(eddsa_25519_pubkey_bytes))
goto err;
if (!point_isreduced(R_bytes))
goto err;
if (!sc_isreduced(s_scalar))
goto err;
if (generalized_challenge(h_scalar, labelset, labelset_len,
NULL, 0, R_bytes, eddsa_25519_pubkey_bytes, M_buf, MSTART, msg_len) != 0)
goto err;
if (generalized_solve_commitment(R_calc_bytes, NULL, NULL,
s_scalar, eddsa_25519_pubkey_bytes, h_scalar) != 0)
goto err;
if (crypto_verify_32(R_bytes, R_calc_bytes) != 0)
goto err;
free(M_buf);
return 0;
err:
free(M_buf);
return -1;
}

View file

@ -0,0 +1,65 @@
#ifndef __GEN_EDDSA_H__
#define __GEN_EDDSA_H__
#include "ge.h"
/* B: base point
R: commitment (point),
r: private nonce (scalar)
K: encoded public key
k: private key (scalar)
Z: 32-bytes random
M: buffer containing message, message starts at M_start, continues for M_len
r = hash(B || labelset || Z || pad1 || k || pad2 || labelset || K || extra || M) (mod q)
*/
int generalized_commit(unsigned char* R_bytes, unsigned char* r_scalar,
const unsigned char* labelset, const unsigned long labelset_len,
const unsigned char* extra, const unsigned long extra_len,
const unsigned char* K_bytes, const unsigned char* k_scalar,
const unsigned char* Z,
unsigned char* M_buf, const unsigned long M_start, const unsigned long M_len);
/* if is_labelset_empty(labelset):
return hash(R || K || M) (mod q)
else:
return hash(B || labelset || R || labelset || K || extra || M) (mod q)
*/
int generalized_challenge(unsigned char* h_scalar,
const unsigned char* labelset, const unsigned long labelset_len,
const unsigned char* extra, const unsigned long extra_len,
const unsigned char* R_bytes,
const unsigned char* K_bytes,
unsigned char* M_buf, const unsigned long M_start, const unsigned long M_len);
/* return r + kh (mod q) */
int generalized_prove(unsigned char* out_scalar,
const unsigned char* r_scalar,
const unsigned char* k_scalar,
const unsigned char* h_scalar);
/* R = B^s / K^h */
int generalized_solve_commitment(unsigned char* R_bytes_out, ge_p3* K_point_out,
const ge_p3* B_point, const unsigned char* s_scalar,
const unsigned char* K_bytes, const unsigned char* h_scalar);
int generalized_eddsa_25519_sign(
unsigned char* signature_out,
const unsigned char* eddsa_25519_pubkey_bytes,
const unsigned char* eddsa_25519_privkey_scalar,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* random,
const unsigned char* customization_label,
const unsigned long customization_label_len);
int generalized_eddsa_25519_verify(
const unsigned char* signature,
const unsigned char* eddsa_25519_pubkey,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* customization_label,
const unsigned long customization_label_len);
#endif

View file

@ -0,0 +1,157 @@
#include <stdlib.h>
#include <string.h>
#include "gen_labelset.h"
#include "gen_constants.h"
const unsigned char B_bytes[] = {
0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
};
unsigned char* buffer_add(unsigned char* bufptr, const unsigned char* bufend,
const unsigned char* in, const unsigned long in_len)
{
unsigned long count = 0;
if (bufptr == NULL || bufend == NULL || bufptr > bufend)
return NULL;
if (in == NULL && in_len != 0)
return NULL;
if (bufend - bufptr < in_len)
return NULL;
for (count=0; count < in_len; count++) {
if (bufptr >= bufend)
return NULL;
*bufptr++ = *in++;
}
return bufptr;
}
unsigned char* buffer_pad(const unsigned char* buf, unsigned char* bufptr, const unsigned char* bufend)
{
unsigned long count = 0;
unsigned long pad_len = 0;
if (buf == NULL || bufptr == NULL || bufend == NULL || bufptr >= bufend || bufptr < buf)
return NULL;
pad_len = (BLOCKLEN - ((bufptr-buf) % BLOCKLEN)) % BLOCKLEN;
if (bufend - bufptr < pad_len)
return NULL;
for (count=0; count < pad_len; count++) {
if (bufptr >= bufend)
return NULL;
*bufptr++ = 0;
}
return bufptr;
}
int labelset_new(unsigned char* labelset, unsigned long* labelset_len, const unsigned long labelset_maxlen,
const unsigned char* protocol_name, const unsigned char protocol_name_len,
const unsigned char* customization_label, const unsigned char customization_label_len)
{
unsigned char* bufptr;
*labelset_len = 0;
if (labelset == NULL)
return -1;
if (labelset_len == NULL)
return -1;
if (labelset_maxlen > LABELSETMAXLEN)
return -1;
if (labelset_maxlen < 3 + protocol_name_len + customization_label_len)
return -1;
if (protocol_name == NULL && protocol_name_len != 0)
return -1;
if (customization_label == NULL && customization_label_len != 0)
return -1;
if (protocol_name_len > LABELMAXLEN)
return -1;
if (customization_label_len > LABELMAXLEN)
return -1;
bufptr = labelset;
*bufptr++ = 2;
*bufptr++ = protocol_name_len;
bufptr = buffer_add(bufptr, labelset + labelset_maxlen, protocol_name, protocol_name_len);
if (bufptr != NULL && bufptr < labelset + labelset_maxlen)
*bufptr++ = customization_label_len;
bufptr = buffer_add(bufptr, labelset + labelset_maxlen,
customization_label, customization_label_len);
if (bufptr != NULL && bufptr - labelset == 3 + protocol_name_len + customization_label_len) {
*labelset_len = bufptr - labelset;
return 0;
}
return -1;
}
int labelset_add(unsigned char* labelset, unsigned long* labelset_len, const unsigned long labelset_maxlen,
const unsigned char* label, const unsigned char label_len)
{
unsigned char* bufptr;
if (labelset_len == NULL)
return -1;
if (*labelset_len > LABELSETMAXLEN || labelset_maxlen > LABELSETMAXLEN)
return -1;
if (*labelset_len >= labelset_maxlen || *labelset_len + label_len + 1 > labelset_maxlen)
return -1;
if (*labelset_len < 3 || labelset_maxlen < 4)
return -1;
if (label_len > LABELMAXLEN)
return -1;
labelset[0]++;
labelset[*labelset_len] = label_len;
bufptr = labelset + *labelset_len + 1;
bufptr = buffer_add(bufptr, labelset + labelset_maxlen, label, label_len);
if (bufptr == NULL)
return -1;
if (bufptr - labelset >= labelset_maxlen)
return -1;
if (bufptr - labelset != *labelset_len + 1 + label_len)
return -1;
*labelset_len += (1 + label_len);
return 0;
}
int labelset_validate(const unsigned char* labelset, const unsigned long labelset_len)
{
unsigned char num_labels = 0;
unsigned char count = 0;
unsigned long offset = 0;
unsigned char label_len = 0;
if (labelset == NULL)
return -1;
if (labelset_len < 3 || labelset_len > LABELSETMAXLEN)
return -1;
num_labels = labelset[0];
offset = 1;
for (count = 0; count < num_labels; count++) {
label_len = labelset[offset];
if (label_len > LABELMAXLEN)
return -1;
offset += 1 + label_len;
if (offset > labelset_len)
return -1;
}
if (offset != labelset_len)
return -1;
return 0;
}
int labelset_is_empty(const unsigned char* labelset, const unsigned long labelset_len)
{
if (labelset_len != 3)
return 0;
return 1;
}

View file

@ -0,0 +1,23 @@
#ifndef __GEN_LABELSET_H__
#define __GEN_LABELSET_H__
extern const unsigned char B_bytes[];
unsigned char* buffer_add(unsigned char* bufptr, const unsigned char* bufend,
const unsigned char* in, const unsigned long in_len);
unsigned char* buffer_pad(const unsigned char* buf, unsigned char* bufptr, const unsigned char* bufend);
int labelset_new(unsigned char* labelset, unsigned long* labelset_len, const unsigned long labelset_maxlen,
const unsigned char* protocol_name, const unsigned char protocol_name_len,
const unsigned char* customization_label, const unsigned char customization_label_len);
int labelset_add(unsigned char* labelset, unsigned long* labelset_len, const unsigned long labelset_maxlen,
const unsigned char* label, const unsigned char label_len);
int labelset_validate(const unsigned char* labelset, const unsigned long labelset_len);
int labelset_is_empty(const unsigned char* labelset, const unsigned long labelset_len);
#endif

View file

@ -0,0 +1,312 @@
#include <string.h>
#include "gen_eddsa.h"
#include "gen_veddsa.h"
#include "gen_constants.h"
#include "gen_labelset.h"
#include "gen_crypto_additions.h"
#include "crypto_hash_sha512.h"
#include "crypto_verify_32.h"
#include "crypto_additions.h"
#include "zeroize.h"
#include "ge.h"
#include "sc.h"
#include "utility.h"
static int generalized_calculate_Bv(ge_p3* Bv_point,
const unsigned char* labelset, const unsigned long labelset_len,
const unsigned char* K_bytes,
unsigned char* M_buf, const unsigned long M_start, const unsigned long M_len)
{
unsigned char* bufptr;
unsigned long prefix_len = 0;
if (labelset_validate(labelset, labelset_len) != 0)
return -1;
if (Bv_point == NULL || K_bytes == NULL || M_buf == NULL)
return -1;
prefix_len = 2*POINTLEN + labelset_len;
if (prefix_len > M_start)
return -1;
bufptr = M_buf + M_start - prefix_len;
bufptr = buffer_add(bufptr, M_buf + M_start, B_bytes, POINTLEN);
bufptr = buffer_add(bufptr, M_buf + M_start, labelset, labelset_len);
bufptr = buffer_add(bufptr, M_buf + M_start, K_bytes, POINTLEN);
if (bufptr == NULL || bufptr != M_buf + M_start)
return -1;
hash_to_point(Bv_point, M_buf + M_start - prefix_len, prefix_len + M_len);
if (ge_isneutral(Bv_point))
return -1;
return 0;
}
static int generalized_calculate_vrf_output(unsigned char* vrf_output,
const unsigned char* labelset, const unsigned long labelset_len,
const ge_p3* cKv_point)
{
unsigned char buf[BUFLEN];
unsigned char* bufptr = buf;
unsigned char* bufend = buf + BUFLEN;
unsigned char cKv_bytes[POINTLEN];
unsigned char hash[HASHLEN];
if (vrf_output == NULL)
return -1;
memset(vrf_output, 0, VRFOUTPUTLEN);
if (labelset_len + 2*POINTLEN > BUFLEN)
return -1;
if (labelset_validate(labelset, labelset_len) != 0)
return -1;
if (cKv_point == NULL)
return -1;
if (VRFOUTPUTLEN > HASHLEN)
return -1;
ge_p3_tobytes(cKv_bytes, cKv_point);
bufptr = buffer_add(bufptr, bufend, B_bytes, POINTLEN);
bufptr = buffer_add(bufptr, bufend, labelset, labelset_len);
bufptr = buffer_add(bufptr, bufend, cKv_bytes, POINTLEN);
if (bufptr == NULL)
return -1;
if (bufptr - buf > BUFLEN)
return -1;
crypto_hash_sha512(hash, buf, bufptr - buf);
memcpy(vrf_output, hash, VRFOUTPUTLEN);
return 0;
}
int generalized_veddsa_25519_sign(
unsigned char* signature_out,
const unsigned char* eddsa_25519_pubkey_bytes,
const unsigned char* eddsa_25519_privkey_scalar,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* random,
const unsigned char* customization_label,
const unsigned long customization_label_len)
{
unsigned char labelset[LABELSETMAXLEN];
unsigned long labelset_len = 0;
ge_p3 Bv_point;
ge_p3 Kv_point;
ge_p3 Rv_point;
unsigned char Bv_bytes[POINTLEN];
unsigned char Kv_bytes[POINTLEN];
unsigned char Rv_bytes[POINTLEN];
unsigned char R_bytes[POINTLEN];
unsigned char r_scalar[SCALARLEN];
unsigned char h_scalar[SCALARLEN];
unsigned char s_scalar[SCALARLEN];
unsigned char extra[3*POINTLEN];
unsigned char* M_buf = NULL;
char* protocol_name = "VEdDSA_25519_SHA512_Elligator2";
if (signature_out == NULL)
goto err;
memset(signature_out, 0, VRFSIGNATURELEN);
if (eddsa_25519_pubkey_bytes == NULL)
goto err;
if (eddsa_25519_privkey_scalar == NULL)
goto err;
if (msg == NULL)
goto err;
if (customization_label == NULL && customization_label_len != 0)
goto err;
if (customization_label_len > LABELMAXLEN)
goto err;
if (msg_len > MSGMAXLEN)
goto err;
if ((M_buf = malloc(msg_len + MSTART)) == 0) {
goto err;
}
memcpy(M_buf + MSTART, msg, msg_len);
// labelset = new_labelset(protocol_name, customization_label)
if (labelset_new(labelset, &labelset_len, LABELSETMAXLEN,
(unsigned char*)protocol_name, strlen(protocol_name),
customization_label, customization_label_len) != 0)
goto err;
// labelset1 = add_label(labels, "1")
// Bv = hash(hash(labelset1 || K) || M)
// Kv = k * Bv
labelset_add(labelset, &labelset_len, LABELSETMAXLEN, (unsigned char*)"1", 1);
if (generalized_calculate_Bv(&Bv_point, labelset, labelset_len,
eddsa_25519_pubkey_bytes, M_buf, MSTART, msg_len) != 0)
goto err;
ge_scalarmult(&Kv_point, eddsa_25519_privkey_scalar, &Bv_point);
ge_p3_tobytes(Bv_bytes, &Bv_point);
ge_p3_tobytes(Kv_bytes, &Kv_point);
// labelset2 = add_label(labels, "2")
// R, r = commit(labelset2, (Bv || Kv), (K,k), Z, M)
labelset[labelset_len-1] = (unsigned char)'2';
memcpy(extra, Bv_bytes, POINTLEN);
memcpy(extra + POINTLEN, Kv_bytes, POINTLEN);
if (generalized_commit(R_bytes, r_scalar,
labelset, labelset_len,
extra, 2*POINTLEN,
eddsa_25519_pubkey_bytes, eddsa_25519_privkey_scalar,
random, M_buf, MSTART, msg_len) != 0)
goto err;
// Rv = r * Bv
ge_scalarmult(&Rv_point, r_scalar, &Bv_point);
ge_p3_tobytes(Rv_bytes, &Rv_point);
// labelset3 = add_label(labels, "3")
// h = challenge(labelset3, (Bv || Kv || Rv), R, K, M)
labelset[labelset_len-1] = (unsigned char)'3';
memcpy(extra + 2*POINTLEN, Rv_bytes, POINTLEN);
if (generalized_challenge(h_scalar,
labelset, labelset_len,
extra, 3*POINTLEN,
R_bytes, eddsa_25519_pubkey_bytes,
M_buf, MSTART, msg_len) != 0)
goto err;
// s = prove(r, k, h)
if (generalized_prove(s_scalar, r_scalar, eddsa_25519_privkey_scalar, h_scalar) != 0)
goto err;
// return (Kv || h || s)
memcpy(signature_out, Kv_bytes, POINTLEN);
memcpy(signature_out + POINTLEN, h_scalar, SCALARLEN);
memcpy(signature_out + POINTLEN + SCALARLEN, s_scalar, SCALARLEN);
zeroize(r_scalar, SCALARLEN);
zeroize_stack();
free(M_buf);
return 0;
err:
zeroize(r_scalar, SCALARLEN);
zeroize_stack();
free(M_buf);
return -1;
}
int generalized_veddsa_25519_verify(
unsigned char* vrf_out,
const unsigned char* signature,
const unsigned char* eddsa_25519_pubkey_bytes,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* customization_label,
const unsigned long customization_label_len)
{
unsigned char labelset[LABELSETMAXLEN];
unsigned long labelset_len = 0;
const unsigned char* Kv_bytes;
const unsigned char* h_scalar;
const unsigned char* s_scalar;
ge_p3 Bv_point, K_point, Kv_point, cK_point, cKv_point;
unsigned char Bv_bytes[POINTLEN];
unsigned char R_calc_bytes[POINTLEN];
unsigned char Rv_calc_bytes[POINTLEN];
unsigned char h_calc_scalar[SCALARLEN];
unsigned char extra[3*POINTLEN];
unsigned char* M_buf = NULL;
char* protocol_name = "VEdDSA_25519_SHA512_Elligator2";
if (vrf_out == NULL)
goto err;
memset(vrf_out, 0, VRFOUTPUTLEN);
if (signature == NULL)
goto err;
if (eddsa_25519_pubkey_bytes == NULL)
goto err;
if (msg == NULL)
goto err;
if (customization_label == NULL && customization_label_len != 0)
goto err;
if (customization_label_len > LABELMAXLEN)
goto err;
if (msg_len > MSGMAXLEN)
goto err;
if ((M_buf = malloc(msg_len + MSTART)) == 0) {
goto err;
}
memcpy(M_buf + MSTART, msg, msg_len);
Kv_bytes = signature;
h_scalar = signature + POINTLEN;
s_scalar = signature + POINTLEN + SCALARLEN;
if (!point_isreduced(eddsa_25519_pubkey_bytes))
goto err;
if (!point_isreduced(Kv_bytes))
goto err;
if (!sc_isreduced(h_scalar))
goto err;
if (!sc_isreduced(s_scalar))
goto err;
// labelset = new_labelset(protocol_name, customization_label)
if (labelset_new(labelset, &labelset_len, LABELSETMAXLEN,
(unsigned char*)protocol_name, strlen(protocol_name),
customization_label, customization_label_len) != 0)
goto err;
// labelset1 = add_label(labels, "1")
// Bv = hash(hash(labelset1 || K) || M)
labelset_add(labelset, &labelset_len, LABELSETMAXLEN, (unsigned char*)"1", 1);
if (generalized_calculate_Bv(&Bv_point, labelset, labelset_len,
eddsa_25519_pubkey_bytes, M_buf, MSTART, msg_len) != 0)
goto err;
ge_p3_tobytes(Bv_bytes, &Bv_point);
// R = solve_commitment(B, s, K, h)
if (generalized_solve_commitment(R_calc_bytes, &K_point, NULL,
s_scalar, eddsa_25519_pubkey_bytes, h_scalar) != 0)
goto err;
// Rv = solve_commitment(Bv, s, Kv, h)
if (generalized_solve_commitment(Rv_calc_bytes, &Kv_point, &Bv_point,
s_scalar, Kv_bytes, h_scalar) != 0)
goto err;
ge_scalarmult_cofactor(&cK_point, &K_point);
ge_scalarmult_cofactor(&cKv_point, &Kv_point);
if (ge_isneutral(&cK_point) || ge_isneutral(&cKv_point) || ge_isneutral(&Bv_point))
goto err;
// labelset3 = add_label(labels, "3")
// h = challenge(labelset3, (Bv || Kv || Rv), R, K, M)
labelset[labelset_len-1] = (unsigned char)'3';
memcpy(extra, Bv_bytes, POINTLEN);
memcpy(extra + POINTLEN, Kv_bytes, POINTLEN);
memcpy(extra + 2*POINTLEN, Rv_calc_bytes, POINTLEN);
if (generalized_challenge(h_calc_scalar,
labelset, labelset_len,
extra, 3*POINTLEN,
R_calc_bytes, eddsa_25519_pubkey_bytes,
M_buf, MSTART, msg_len) != 0)
goto err;
// if bytes_equal(h, h')
if (crypto_verify_32(h_scalar, h_calc_scalar) != 0)
goto err;
// labelset4 = add_label(labels, "4")
// v = hash(labelset4 || c*Kv)
labelset[labelset_len-1] = (unsigned char)'4';
if (generalized_calculate_vrf_output(vrf_out, labelset, labelset_len, &cKv_point) != 0)
goto err;
free(M_buf);
return 0;
err:
free(M_buf);
return -1;
}

View file

@ -0,0 +1,23 @@
#ifndef __GEN_VEDDSA_H__
#define __GEN_VEDDSA_H__
int generalized_veddsa_25519_sign(
unsigned char* signature_out,
const unsigned char* eddsa_25519_pubkey_bytes,
const unsigned char* eddsa_25519_privkey_scalar,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* random,
const unsigned char* customization_label,
const unsigned long customization_label_len);
int generalized_veddsa_25519_verify(
unsigned char* vrf_out,
const unsigned char* signature,
const unsigned char* eddsa_25519_pubkey_bytes,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* customization_label,
const unsigned long customization_label_len);
#endif

View file

@ -0,0 +1,131 @@
#include <string.h>
#include "crypto_additions.h"
#include "gen_x.h"
#include "gen_constants.h"
#include "gen_eddsa.h"
#include "gen_veddsa.h"
#include "gen_crypto_additions.h"
#include "zeroize.h"
static int convert_25519_pubkey(unsigned char* ed_pubkey_bytes, const unsigned char* x25519_pubkey_bytes) {
fe u;
fe y;
/* Convert the X25519 public key into an Ed25519 public key.
y = (u - 1) / (u + 1)
NOTE: u=-1 is converted to y=0 since fe_invert is mod-exp
*/
if (!fe_isreduced(x25519_pubkey_bytes))
return -1;
fe_frombytes(u, x25519_pubkey_bytes);
fe_montx_to_edy(y, u);
fe_tobytes(ed_pubkey_bytes, y);
return 0;
}
static int calculate_25519_keypair(unsigned char* K_bytes, unsigned char* k_scalar,
const unsigned char* x25519_privkey_scalar)
{
unsigned char kneg[SCALARLEN];
ge_p3 ed_pubkey_point;
unsigned char sign_bit = 0;
if (SCALARLEN != 32)
return -1;
/* Convert the Curve25519 privkey to an Ed25519 public key */
ge_scalarmult_base(&ed_pubkey_point, x25519_privkey_scalar);
ge_p3_tobytes(K_bytes, &ed_pubkey_point);
/* Force Edwards sign bit to zero */
sign_bit = (K_bytes[31] & 0x80) >> 7;
memcpy(k_scalar, x25519_privkey_scalar, 32);
sc_neg(kneg, k_scalar);
sc_cmov(k_scalar, kneg, sign_bit);
K_bytes[31] &= 0x7F;
zeroize(kneg, SCALARLEN);
return 0;
}
int generalized_xeddsa_25519_sign(unsigned char* signature_out,
const unsigned char* x25519_privkey_scalar,
const unsigned char* msg, const unsigned long msg_len,
const unsigned char* random,
const unsigned char* customization_label,
const unsigned long customization_label_len)
{
unsigned char K_bytes[POINTLEN];
unsigned char k_scalar[SCALARLEN];
int retval = -1;
if (calculate_25519_keypair(K_bytes, k_scalar, x25519_privkey_scalar) != 0)
return -1;
retval = generalized_eddsa_25519_sign(signature_out,
K_bytes, k_scalar,
msg, msg_len, random,
customization_label, customization_label_len);
zeroize(k_scalar, SCALARLEN);
return retval;
}
int generalized_xveddsa_25519_sign(
unsigned char* signature_out,
const unsigned char* x25519_privkey_scalar,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* random,
const unsigned char* customization_label,
const unsigned long customization_label_len)
{
unsigned char K_bytes[POINTLEN];
unsigned char k_scalar[SCALARLEN];
int retval = -1;
if (calculate_25519_keypair(K_bytes, k_scalar, x25519_privkey_scalar) != 0)
return -1;
retval = generalized_veddsa_25519_sign(signature_out, K_bytes, k_scalar,
msg, msg_len, random,
customization_label, customization_label_len);
zeroize(k_scalar, SCALARLEN);
return retval;
}
int generalized_xeddsa_25519_verify(
const unsigned char* signature,
const unsigned char* x25519_pubkey_bytes,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* customization_label,
const unsigned long customization_label_len)
{
unsigned char K_bytes[POINTLEN];
if (convert_25519_pubkey(K_bytes, x25519_pubkey_bytes) != 0)
return -1;
return generalized_eddsa_25519_verify(signature, K_bytes, msg, msg_len,
customization_label, customization_label_len);
}
int generalized_xveddsa_25519_verify(
unsigned char* vrf_out,
const unsigned char* signature,
const unsigned char* x25519_pubkey_bytes,
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* customization_label,
const unsigned long customization_label_len)
{
unsigned char K_bytes[POINTLEN];
if (convert_25519_pubkey(K_bytes, x25519_pubkey_bytes) != 0)
return -1;
return generalized_veddsa_25519_verify(vrf_out, signature, K_bytes, msg, msg_len,
customization_label, customization_label_len);
}

View file

@ -0,0 +1,37 @@
#ifndef __GEN_X_H
#define __GEN_X_H
int generalized_xeddsa_25519_sign(unsigned char* signature_out, /* 64 bytes */
const unsigned char* x25519_privkey_scalar, /* 32 bytes */
const unsigned char* msg, const unsigned long msg_len,
const unsigned char* random, /* 32 bytes */
const unsigned char* customization_label,
const unsigned long customization_label_len);
int generalized_xeddsa_25519_verify(
const unsigned char* signature, /* 64 bytes */
const unsigned char* x25519_pubkey_bytes, /* 32 bytes */
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* customization_label,
const unsigned long customization_label_len);
int generalized_xveddsa_25519_sign(
unsigned char* signature_out, /* 96 bytes */
const unsigned char* x25519_privkey_scalar, /* 32 bytes */
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* random, /* 32 bytes */
const unsigned char* customization_label,
const unsigned long customization_label_len);
int generalized_xveddsa_25519_verify(
unsigned char* vrf_out, /* 32 bytes */
const unsigned char* signature, /* 96 bytes */
const unsigned char* x25519_pubkey_bytes, /* 32 bytes */
const unsigned char* msg,
const unsigned long msg_len,
const unsigned char* customization_label,
const unsigned long customization_label_len);
#endif

View file

@ -0,0 +1,12 @@
#include<string.h>
#include "fe.h"
#include "crypto_additions.h"
int point_isreduced(const unsigned char* p)
{
unsigned char strict[32];
memmove(strict, p, 32);
strict[31] &= 0x7F; /* mask off sign bit */
return fe_isreduced(strict);
}

View file

@ -0,0 +1,17 @@
#include <string.h>
#include "fe.h"
#include "sc.h"
#include "crypto_additions.h"
#include "crypto_verify_32.h"
int sc_isreduced(const unsigned char* s)
{
unsigned char strict[64];
memset(strict, 0, 64);
memmove(strict, s, 32);
sc_reduce(strict);
if (crypto_verify_32(strict, s) != 0)
return 0;
return 1;
}

View file

@ -0,0 +1,21 @@
#include "ge.h"
#include "keygen.h"
#include "crypto_additions.h"
void curve25519_keygen(unsigned char* curve25519_pubkey_out,
const unsigned char* curve25519_privkey_in)
{
/* Perform a fixed-base multiplication of the Edwards base point,
(which is efficient due to precalculated tables), then convert
to the Curve25519 montgomery-format public key.
NOTE: y=1 is converted to u=0 since fe_invert is mod-exp
*/
ge_p3 ed; /* Ed25519 pubkey point */
fe u;
ge_scalarmult_base(&ed, curve25519_privkey_in);
ge_p3_to_montx(u, &ed);
fe_tobytes(curve25519_pubkey_out, u);
}

View file

@ -0,0 +1,12 @@
#ifndef __KEYGEN_H__
#define __KEYGEN_H__
/* Sets and clears bits to make a random 32 bytes into a private key */
void sc_clamp(unsigned char* a);
/* The private key should be 32 random bytes "clamped" by sc_clamp() */
void curve25519_keygen(unsigned char* curve25519_pubkey_out, /* 32 bytes */
const unsigned char* curve25519_privkey_in); /* 32 bytes */
#endif

View file

@ -0,0 +1,45 @@
#include <string.h>
#include "crypto_sign.h"
#include "crypto_hash_sha512.h"
#include "crypto_verify_32.h"
#include "ge.h"
#include "sc.h"
#include "crypto_additions.h"
int crypto_sign_open_modified(
unsigned char *m,
const unsigned char *sm,unsigned long long smlen,
const unsigned char *pk
)
{
unsigned char pkcopy[32];
unsigned char rcopy[32];
unsigned char scopy[32];
unsigned char h[64];
unsigned char rcheck[32];
ge_p3 A;
ge_p2 R;
if (smlen < 64) goto badsig;
if (sm[63] & 224) goto badsig; /* strict parsing of s */
if (ge_frombytes_negate_vartime(&A,pk) != 0) goto badsig;
memmove(pkcopy,pk,32);
memmove(rcopy,sm,32);
memmove(scopy,sm + 32,32);
memmove(m,sm,smlen);
memmove(m + 32,pkcopy,32);
crypto_hash_sha512(h,m,smlen);
sc_reduce(h);
ge_double_scalarmult_vartime(&R,h,&A,scopy);
ge_tobytes(rcheck,&R);
if (crypto_verify_32(rcheck,rcopy) == 0) {
return 0;
}
badsig:
return -1;
}

View file

@ -0,0 +1,8 @@
#include "crypto_additions.h"
void sc_clamp(unsigned char* a)
{
a[0] &= 248;
a[31] &= 127;
a[31] |= 64;
}

View file

@ -0,0 +1,21 @@
#include "crypto_additions.h"
/*
Replace (f,g) with (g,g) if b == 1;
replace (f,g) with (f,g) if b == 0.
Preconditions: b in {0,1}.
*/
void sc_cmov(unsigned char* f, const unsigned char* g, unsigned char b)
{
int count=32;
unsigned char x[32];
for (count=0; count < 32; count++)
x[count] = f[count] ^ g[count];
b = -b;
for (count=0; count < 32; count++)
x[count] &= b;
for (count=0; count < 32; count++)
f[count] = f[count] ^ x[count];
}

View file

@ -0,0 +1,25 @@
#include <string.h>
#include "crypto_additions.h"
#include "sc.h"
/* l = order of base point = 2^252 + 27742317777372353535851937790883648493 */
/*
static unsigned char l[32] = {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0, 0x10};
*/
static unsigned char lminus1[32] = {0xec, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
/* b = -a (mod l) */
void sc_neg(unsigned char *b, const unsigned char *a)
{
unsigned char zero[32];
memset(zero, 0, 32);
sc_muladd(b, lminus1, a, zero); /* b = (-1)a + 0 (mod l) */
}

View file

@ -0,0 +1,53 @@
#include <string.h>
#include "crypto_sign.h"
#include "crypto_hash_sha512.h"
#include "ge.h"
#include "sc.h"
#include "zeroize.h"
#include "crypto_additions.h"
/* NEW: Compare to pristine crypto_sign()
Uses explicit private key for nonce derivation and as scalar,
instead of deriving both from a master key.
*/
int crypto_sign_modified(
unsigned char *sm,
const unsigned char *m,unsigned long long mlen,
const unsigned char *sk, const unsigned char* pk,
const unsigned char* random
)
{
unsigned char nonce[64];
unsigned char hram[64];
ge_p3 R;
int count=0;
memmove(sm + 64,m,mlen);
memmove(sm + 32,sk,32); /* NEW: Use privkey directly for nonce derivation */
/* NEW : add prefix to separate hash uses - see .h */
sm[0] = 0xFE;
for (count = 1; count < 32; count++)
sm[count] = 0xFF;
/* NEW: add suffix of random data */
memmove(sm + mlen + 64, random, 64);
crypto_hash_sha512(nonce,sm,mlen + 128);
memmove(sm + 32,pk,32);
sc_reduce(nonce);
ge_scalarmult_base(&R,nonce);
ge_p3_tobytes(sm,&R);
crypto_hash_sha512(hram,sm,mlen + 64);
sc_reduce(hram);
sc_muladd(sm + 32,hram,sk,nonce); /* NEW: Use privkey directly */
/* Erase any traces of private scalar or
nonce left in the stack from sc_muladd */
zeroize_stack();
zeroize(nonce, 64);
return 0;
}

View file

@ -0,0 +1,29 @@
#include <stdlib.h>
#include <stdio.h>
#include "utility.h"
void print_vector(const char* name, const unsigned char* v)
{
int count;
printf("%s = \n", name);
for (count = 0; count < 32; count++)
printf("%02x ", v[count]);
printf("\n");
}
void print_bytes(const char* name, const unsigned char* v, int numbytes)
{
int count;
printf("%s = \n", name);
for (count = 0; count < numbytes; count++)
printf("%02x ", v[count]);
printf("\n");
}
void print_fe(const char* name, const fe in)
{
unsigned char bytes[32];
fe_tobytes(bytes, in);
print_vector(name, bytes);
}

View file

@ -0,0 +1,11 @@
#ifndef __UTILITY_H__
#define __UTILITY_H__
#include "fe.h"
void print_vector(const char* name, const unsigned char* v);
void print_bytes(const char* name, const unsigned char* v, int numbytes);
void print_fe(const char* name, const fe in);
#endif

View file

@ -0,0 +1,80 @@
#include <string.h>
#include "ge.h"
#include "crypto_additions.h"
#include "zeroize.h"
#include "xeddsa.h"
#include "crypto_verify_32.h"
int xed25519_sign(unsigned char* signature_out,
const unsigned char* curve25519_privkey,
const unsigned char* msg, const unsigned long msg_len,
const unsigned char* random)
{
unsigned char a[32], aneg[32];
unsigned char A[32];
ge_p3 ed_pubkey_point;
unsigned char *sigbuf; /* working buffer */
unsigned char sign_bit = 0;
if ((sigbuf = malloc(msg_len + 128)) == 0) {
memset(signature_out, 0, 64);
return -1;
}
/* Convert the Curve25519 privkey to an Ed25519 public key */
ge_scalarmult_base(&ed_pubkey_point, curve25519_privkey);
ge_p3_tobytes(A, &ed_pubkey_point);
/* Force Edwards sign bit to zero */
sign_bit = (A[31] & 0x80) >> 7;
memcpy(a, curve25519_privkey, 32);
sc_neg(aneg, a);
sc_cmov(a, aneg, sign_bit);
A[31] &= 0x7F;
/* Perform an Ed25519 signature with explicit private key */
crypto_sign_modified(sigbuf, msg, msg_len, a, A, random);
memmove(signature_out, sigbuf, 64);
zeroize(a, 32);
zeroize(aneg, 32);
free(sigbuf);
return 0;
}
int xed25519_verify(const unsigned char* signature,
const unsigned char* curve25519_pubkey,
const unsigned char* msg, const unsigned long msg_len)
{
fe u;
fe y;
unsigned char ed_pubkey[32];
unsigned char verifybuf[MAX_MSG_LEN + 64]; /* working buffer */
unsigned char verifybuf2[MAX_MSG_LEN + 64]; /* working buffer #2 */
if (msg_len > MAX_MSG_LEN) {
return -1;
}
/* Convert the Curve25519 public key into an Ed25519 public key.
y = (u - 1) / (u + 1)
NOTE: u=-1 is converted to y=0 since fe_invert is mod-exp
*/
if (!fe_isreduced(curve25519_pubkey))
return -1;
fe_frombytes(u, curve25519_pubkey);
fe_montx_to_edy(y, u);
fe_tobytes(ed_pubkey, y);
memmove(verifybuf, signature, 64);
memmove(verifybuf+64, msg, msg_len);
/* Then perform a normal Ed25519 verification, return 0 on success */
/* The below call has a strange API: */
/* verifybuf = R || S || message */
/* verifybuf2 = internal to next call gets a copy of verifybuf, S gets
replaced with pubkey for hashing */
return crypto_sign_open_modified(verifybuf2, verifybuf, 64 + msg_len, ed_pubkey);
}

View file

@ -0,0 +1,16 @@
#ifndef __XEDDSA_H__
#define __XEDDSA_H__
/* returns 0 on success */
int xed25519_sign(unsigned char* signature_out, /* 64 bytes */
const unsigned char* curve25519_privkey, /* 32 bytes */
const unsigned char* msg, const unsigned long msg_len, /* <= 256 bytes */
const unsigned char* random); /* 64 bytes */
/* returns 0 on success */
int xed25519_verify(const unsigned char* signature, /* 64 bytes */
const unsigned char* curve25519_pubkey, /* 32 bytes */
const unsigned char* msg, const unsigned long msg_len); /* <= 256 bytes */
#endif

View file

@ -0,0 +1,16 @@
#include "zeroize.h"
void zeroize(unsigned char* b, size_t len)
{
size_t count = 0;
volatile unsigned char *p = b;
for (count = 0; count < len; count++)
p[count] = 0;
}
void zeroize_stack()
{
unsigned char m[ZEROIZE_STACK_SIZE];
zeroize(m, ZEROIZE_STACK_SIZE);
}

View file

@ -0,0 +1,12 @@
#ifndef __ZEROIZE_H__
#define __ZEROIZE_H__
#include <stdlib.h>
#define ZEROIZE_STACK_SIZE 1024
void zeroize(unsigned char* b, size_t len);
void zeroize_stack();
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,40 @@
{
{ 25967493,-14356035,29566456,3660896,-12694345,4014787,27544626,-11754271,-6079156,2047605 },
{ -12545711,934262,-2722910,3049990,-727428,9406986,12720692,5043384,19500929,-15469378 },
{ -8738181,4489570,9688441,-14785194,10184609,-12363380,29287919,11864899,-24514362,-4438546 },
},
{
{ 15636291,-9688557,24204773,-7912398,616977,-16685262,27787600,-14772189,28944400,-1550024 },
{ 16568933,4717097,-11556148,-1102322,15682896,-11807043,16354577,-11775962,7689662,11199574 },
{ 30464156,-5976125,-11779434,-15670865,23220365,15915852,7512774,10017326,-17749093,-9920357 },
},
{
{ 10861363,11473154,27284546,1981175,-30064349,12577861,32867885,14515107,-15438304,10819380 },
{ 4708026,6336745,20377586,9066809,-11272109,6594696,-25653668,12483688,-12668491,5581306 },
{ 19563160,16186464,-29386857,4097519,10237984,-4348115,28542350,13850243,-23678021,-15815942 },
},
{
{ 5153746,9909285,1723747,-2777874,30523605,5516873,19480852,5230134,-23952439,-15175766 },
{ -30269007,-3463509,7665486,10083793,28475525,1649722,20654025,16520125,30598449,7715701 },
{ 28881845,14381568,9657904,3680757,-20181635,7843316,-31400660,1370708,29794553,-1409300 },
},
{
{ -22518993,-6692182,14201702,-8745502,-23510406,8844726,18474211,-1361450,-13062696,13821877 },
{ -6455177,-7839871,3374702,-4740862,-27098617,-10571707,31655028,-7212327,18853322,-14220951 },
{ 4566830,-12963868,-28974889,-12240689,-7602672,-2830569,-8514358,-10431137,2207753,-3209784 },
},
{
{ -25154831,-4185821,29681144,7868801,-6854661,-9423865,-12437364,-663000,-31111463,-16132436 },
{ 25576264,-2703214,7349804,-11814844,16472782,9300885,3844789,15725684,171356,6466918 },
{ 23103977,13316479,9739013,-16149481,817875,-15038942,8965339,-14088058,-30714912,16193877 },
},
{
{ -33521811,3180713,-2394130,14003687,-16903474,-16270840,17238398,4729455,-18074513,9256800 },
{ -25182317,-4174131,32336398,5036987,-21236817,11360617,22616405,9761698,-19827198,630305 },
{ -13720693,2639453,-24237460,-7406481,9494427,-5774029,-6554551,-15960994,-2449256,-14291300 },
},
{
{ -3151181,-5046075,9282714,6866145,-31907062,-863023,-18940575,15033784,25105118,-7894876 },
{ -24326370,15950226,-31801215,-14592823,-11662737,-5090925,1573892,-2625887,2198790,-15804619 },
{ -3099351,10324967,-2241613,7453183,-5446979,-2735503,-13812022,-16236442,-32461234,-12290683 },
},

View file

@ -0,0 +1 @@
-10913610,13857413,-15372611,6949391,114729,-8787816,-6275908,-3247719,-18696448,-12055116

View file

@ -0,0 +1 @@
-21827239,-5839606,-30745221,13898782,229458,15978800,-12551817,-6495438,29715968,9444199

View file

@ -0,0 +1,56 @@
#ifndef FE_H
#define FE_H
#include "crypto_int32.h"
typedef crypto_int32 fe[10];
/*
fe means field element.
Here the field is \Z/(2^255-19).
An element t, entries t[0]...t[9], represents the integer
t[0]+2^26 t[1]+2^51 t[2]+2^77 t[3]+2^102 t[4]+...+2^230 t[9].
Bounds on each t[i] vary depending on context.
*/
#define fe_frombytes crypto_sign_ed25519_ref10_fe_frombytes
#define fe_tobytes crypto_sign_ed25519_ref10_fe_tobytes
#define fe_copy crypto_sign_ed25519_ref10_fe_copy
#define fe_isnonzero crypto_sign_ed25519_ref10_fe_isnonzero
#define fe_isnegative crypto_sign_ed25519_ref10_fe_isnegative
#define fe_0 crypto_sign_ed25519_ref10_fe_0
#define fe_1 crypto_sign_ed25519_ref10_fe_1
#define fe_cswap crypto_sign_ed25519_ref10_fe_cswap
#define fe_cmov crypto_sign_ed25519_ref10_fe_cmov
#define fe_add crypto_sign_ed25519_ref10_fe_add
#define fe_sub crypto_sign_ed25519_ref10_fe_sub
#define fe_neg crypto_sign_ed25519_ref10_fe_neg
#define fe_mul crypto_sign_ed25519_ref10_fe_mul
#define fe_sq crypto_sign_ed25519_ref10_fe_sq
#define fe_sq2 crypto_sign_ed25519_ref10_fe_sq2
#define fe_mul121666 crypto_sign_ed25519_ref10_fe_mul121666
#define fe_invert crypto_sign_ed25519_ref10_fe_invert
#define fe_pow22523 crypto_sign_ed25519_ref10_fe_pow22523
extern void fe_frombytes(fe,const unsigned char *);
extern void fe_tobytes(unsigned char *,const fe);
extern void fe_copy(fe,const fe);
extern int fe_isnonzero(const fe);
extern int fe_isnegative(const fe);
extern void fe_0(fe);
extern void fe_1(fe);
extern void fe_cswap(fe,fe,unsigned int);
extern void fe_cmov(fe,const fe,unsigned int);
extern void fe_add(fe,const fe,const fe);
extern void fe_sub(fe,const fe,const fe);
extern void fe_neg(fe,const fe);
extern void fe_mul(fe,const fe,const fe);
extern void fe_sq(fe,const fe);
extern void fe_sq2(fe,const fe);
extern void fe_mul121666(fe,const fe);
extern void fe_invert(fe,const fe);
extern void fe_pow22523(fe,const fe);
#endif

View file

@ -0,0 +1,19 @@
#include "fe.h"
/*
h = 0
*/
void fe_0(fe h)
{
h[0] = 0;
h[1] = 0;
h[2] = 0;
h[3] = 0;
h[4] = 0;
h[5] = 0;
h[6] = 0;
h[7] = 0;
h[8] = 0;
h[9] = 0;
}

View file

@ -0,0 +1,19 @@
#include "fe.h"
/*
h = 1
*/
void fe_1(fe h)
{
h[0] = 1;
h[1] = 0;
h[2] = 0;
h[3] = 0;
h[4] = 0;
h[5] = 0;
h[6] = 0;
h[7] = 0;
h[8] = 0;
h[9] = 0;
}

View file

@ -0,0 +1,57 @@
#include "fe.h"
/*
h = f + g
Can overlap h with f or g.
Preconditions:
|f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
Postconditions:
|h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
*/
void fe_add(fe h,const fe f,const fe g)
{
crypto_int32 f0 = f[0];
crypto_int32 f1 = f[1];
crypto_int32 f2 = f[2];
crypto_int32 f3 = f[3];
crypto_int32 f4 = f[4];
crypto_int32 f5 = f[5];
crypto_int32 f6 = f[6];
crypto_int32 f7 = f[7];
crypto_int32 f8 = f[8];
crypto_int32 f9 = f[9];
crypto_int32 g0 = g[0];
crypto_int32 g1 = g[1];
crypto_int32 g2 = g[2];
crypto_int32 g3 = g[3];
crypto_int32 g4 = g[4];
crypto_int32 g5 = g[5];
crypto_int32 g6 = g[6];
crypto_int32 g7 = g[7];
crypto_int32 g8 = g[8];
crypto_int32 g9 = g[9];
crypto_int32 h0 = f0 + g0;
crypto_int32 h1 = f1 + g1;
crypto_int32 h2 = f2 + g2;
crypto_int32 h3 = f3 + g3;
crypto_int32 h4 = f4 + g4;
crypto_int32 h5 = f5 + g5;
crypto_int32 h6 = f6 + g6;
crypto_int32 h7 = f7 + g7;
crypto_int32 h8 = f8 + g8;
crypto_int32 h9 = f9 + g9;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}

View file

@ -0,0 +1,63 @@
#include "fe.h"
/*
Replace (f,g) with (g,g) if b == 1;
replace (f,g) with (f,g) if b == 0.
Preconditions: b in {0,1}.
*/
void fe_cmov(fe f,const fe g,unsigned int b)
{
crypto_int32 f0 = f[0];
crypto_int32 f1 = f[1];
crypto_int32 f2 = f[2];
crypto_int32 f3 = f[3];
crypto_int32 f4 = f[4];
crypto_int32 f5 = f[5];
crypto_int32 f6 = f[6];
crypto_int32 f7 = f[7];
crypto_int32 f8 = f[8];
crypto_int32 f9 = f[9];
crypto_int32 g0 = g[0];
crypto_int32 g1 = g[1];
crypto_int32 g2 = g[2];
crypto_int32 g3 = g[3];
crypto_int32 g4 = g[4];
crypto_int32 g5 = g[5];
crypto_int32 g6 = g[6];
crypto_int32 g7 = g[7];
crypto_int32 g8 = g[8];
crypto_int32 g9 = g[9];
crypto_int32 x0 = f0 ^ g0;
crypto_int32 x1 = f1 ^ g1;
crypto_int32 x2 = f2 ^ g2;
crypto_int32 x3 = f3 ^ g3;
crypto_int32 x4 = f4 ^ g4;
crypto_int32 x5 = f5 ^ g5;
crypto_int32 x6 = f6 ^ g6;
crypto_int32 x7 = f7 ^ g7;
crypto_int32 x8 = f8 ^ g8;
crypto_int32 x9 = f9 ^ g9;
b = -b;
x0 &= b;
x1 &= b;
x2 &= b;
x3 &= b;
x4 &= b;
x5 &= b;
x6 &= b;
x7 &= b;
x8 &= b;
x9 &= b;
f[0] = f0 ^ x0;
f[1] = f1 ^ x1;
f[2] = f2 ^ x2;
f[3] = f3 ^ x3;
f[4] = f4 ^ x4;
f[5] = f5 ^ x5;
f[6] = f6 ^ x6;
f[7] = f7 ^ x7;
f[8] = f8 ^ x8;
f[9] = f9 ^ x9;
}

View file

@ -0,0 +1,29 @@
#include "fe.h"
/*
h = f
*/
void fe_copy(fe h,const fe f)
{
crypto_int32 f0 = f[0];
crypto_int32 f1 = f[1];
crypto_int32 f2 = f[2];
crypto_int32 f3 = f[3];
crypto_int32 f4 = f[4];
crypto_int32 f5 = f[5];
crypto_int32 f6 = f[6];
crypto_int32 f7 = f[7];
crypto_int32 f8 = f[8];
crypto_int32 f9 = f[9];
h[0] = f0;
h[1] = f1;
h[2] = f2;
h[3] = f3;
h[4] = f4;
h[5] = f5;
h[6] = f6;
h[7] = f7;
h[8] = f8;
h[9] = f9;
}

View file

@ -0,0 +1,73 @@
#include "fe.h"
#include "crypto_int64.h"
#include "crypto_uint64.h"
static crypto_uint64 load_3(const unsigned char *in)
{
crypto_uint64 result;
result = (crypto_uint64) in[0];
result |= ((crypto_uint64) in[1]) << 8;
result |= ((crypto_uint64) in[2]) << 16;
return result;
}
static crypto_uint64 load_4(const unsigned char *in)
{
crypto_uint64 result;
result = (crypto_uint64) in[0];
result |= ((crypto_uint64) in[1]) << 8;
result |= ((crypto_uint64) in[2]) << 16;
result |= ((crypto_uint64) in[3]) << 24;
return result;
}
/*
Ignores top bit of h.
*/
void fe_frombytes(fe h,const unsigned char *s)
{
crypto_int64 h0 = load_4(s);
crypto_int64 h1 = load_3(s + 4) << 6;
crypto_int64 h2 = load_3(s + 7) << 5;
crypto_int64 h3 = load_3(s + 10) << 3;
crypto_int64 h4 = load_3(s + 13) << 2;
crypto_int64 h5 = load_4(s + 16);
crypto_int64 h6 = load_3(s + 20) << 7;
crypto_int64 h7 = load_3(s + 23) << 5;
crypto_int64 h8 = load_3(s + 26) << 4;
crypto_int64 h9 = (load_3(s + 29) & 8388607) << 2;
crypto_int64 carry0;
crypto_int64 carry1;
crypto_int64 carry2;
crypto_int64 carry3;
crypto_int64 carry4;
crypto_int64 carry5;
crypto_int64 carry6;
crypto_int64 carry7;
crypto_int64 carry8;
crypto_int64 carry9;
carry9 = (h9 + (crypto_int64) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
carry1 = (h1 + (crypto_int64) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry3 = (h3 + (crypto_int64) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry5 = (h5 + (crypto_int64) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
carry7 = (h7 + (crypto_int64) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry2 = (h2 + (crypto_int64) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry6 = (h6 + (crypto_int64) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
carry8 = (h8 + (crypto_int64) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}

View file

@ -0,0 +1,14 @@
#include "fe.h"
void fe_invert(fe out,const fe z)
{
fe t0;
fe t1;
fe t2;
fe t3;
int i;
#include "pow225521.h"
return;
}

View file

@ -0,0 +1,16 @@
#include "fe.h"
/*
return 1 if f is in {1,3,5,...,q-2}
return 0 if f is in {0,2,4,...,q-1}
Preconditions:
|f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
*/
int fe_isnegative(const fe f)
{
unsigned char s[32];
fe_tobytes(s,f);
return s[0] & 1;
}

View file

@ -0,0 +1,28 @@
#include "fe.h"
#include "crypto_verify_32.h"
/*
return nonzero if f == 0
return 0 if f != 0
Preconditions:
|f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
*/
/* TREVOR'S COMMENT
*
* I think the above comment is wrong. Instead:
*
* return 0 if f == 0
* return -1 if f != 0
*
* */
static const unsigned char zero[32];
int fe_isnonzero(const fe f)
{
unsigned char s[32];
fe_tobytes(s,f);
return crypto_verify_32(s,zero);
}

View file

@ -0,0 +1,253 @@
#include "fe.h"
#include "crypto_int64.h"
/*
h = f * g
Can overlap h with f or g.
Preconditions:
|f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
|g| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
Postconditions:
|h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
*/
/*
Notes on implementation strategy:
Using schoolbook multiplication.
Karatsuba would save a little in some cost models.
Most multiplications by 2 and 19 are 32-bit precomputations;
cheaper than 64-bit postcomputations.
There is one remaining multiplication by 19 in the carry chain;
one *19 precomputation can be merged into this,
but the resulting data flow is considerably less clean.
There are 12 carries below.
10 of them are 2-way parallelizable and vectorizable.
Can get away with 11 carries, but then data flow is much deeper.
With tighter constraints on inputs can squeeze carries into int32.
*/
void fe_mul(fe h,const fe f,const fe g)
{
crypto_int32 f0 = f[0];
crypto_int32 f1 = f[1];
crypto_int32 f2 = f[2];
crypto_int32 f3 = f[3];
crypto_int32 f4 = f[4];
crypto_int32 f5 = f[5];
crypto_int32 f6 = f[6];
crypto_int32 f7 = f[7];
crypto_int32 f8 = f[8];
crypto_int32 f9 = f[9];
crypto_int32 g0 = g[0];
crypto_int32 g1 = g[1];
crypto_int32 g2 = g[2];
crypto_int32 g3 = g[3];
crypto_int32 g4 = g[4];
crypto_int32 g5 = g[5];
crypto_int32 g6 = g[6];
crypto_int32 g7 = g[7];
crypto_int32 g8 = g[8];
crypto_int32 g9 = g[9];
crypto_int32 g1_19 = 19 * g1; /* 1.959375*2^29 */
crypto_int32 g2_19 = 19 * g2; /* 1.959375*2^30; still ok */
crypto_int32 g3_19 = 19 * g3;
crypto_int32 g4_19 = 19 * g4;
crypto_int32 g5_19 = 19 * g5;
crypto_int32 g6_19 = 19 * g6;
crypto_int32 g7_19 = 19 * g7;
crypto_int32 g8_19 = 19 * g8;
crypto_int32 g9_19 = 19 * g9;
crypto_int32 f1_2 = 2 * f1;
crypto_int32 f3_2 = 2 * f3;
crypto_int32 f5_2 = 2 * f5;
crypto_int32 f7_2 = 2 * f7;
crypto_int32 f9_2 = 2 * f9;
crypto_int64 f0g0 = f0 * (crypto_int64) g0;
crypto_int64 f0g1 = f0 * (crypto_int64) g1;
crypto_int64 f0g2 = f0 * (crypto_int64) g2;
crypto_int64 f0g3 = f0 * (crypto_int64) g3;
crypto_int64 f0g4 = f0 * (crypto_int64) g4;
crypto_int64 f0g5 = f0 * (crypto_int64) g5;
crypto_int64 f0g6 = f0 * (crypto_int64) g6;
crypto_int64 f0g7 = f0 * (crypto_int64) g7;
crypto_int64 f0g8 = f0 * (crypto_int64) g8;
crypto_int64 f0g9 = f0 * (crypto_int64) g9;
crypto_int64 f1g0 = f1 * (crypto_int64) g0;
crypto_int64 f1g1_2 = f1_2 * (crypto_int64) g1;
crypto_int64 f1g2 = f1 * (crypto_int64) g2;
crypto_int64 f1g3_2 = f1_2 * (crypto_int64) g3;
crypto_int64 f1g4 = f1 * (crypto_int64) g4;
crypto_int64 f1g5_2 = f1_2 * (crypto_int64) g5;
crypto_int64 f1g6 = f1 * (crypto_int64) g6;
crypto_int64 f1g7_2 = f1_2 * (crypto_int64) g7;
crypto_int64 f1g8 = f1 * (crypto_int64) g8;
crypto_int64 f1g9_38 = f1_2 * (crypto_int64) g9_19;
crypto_int64 f2g0 = f2 * (crypto_int64) g0;
crypto_int64 f2g1 = f2 * (crypto_int64) g1;
crypto_int64 f2g2 = f2 * (crypto_int64) g2;
crypto_int64 f2g3 = f2 * (crypto_int64) g3;
crypto_int64 f2g4 = f2 * (crypto_int64) g4;
crypto_int64 f2g5 = f2 * (crypto_int64) g5;
crypto_int64 f2g6 = f2 * (crypto_int64) g6;
crypto_int64 f2g7 = f2 * (crypto_int64) g7;
crypto_int64 f2g8_19 = f2 * (crypto_int64) g8_19;
crypto_int64 f2g9_19 = f2 * (crypto_int64) g9_19;
crypto_int64 f3g0 = f3 * (crypto_int64) g0;
crypto_int64 f3g1_2 = f3_2 * (crypto_int64) g1;
crypto_int64 f3g2 = f3 * (crypto_int64) g2;
crypto_int64 f3g3_2 = f3_2 * (crypto_int64) g3;
crypto_int64 f3g4 = f3 * (crypto_int64) g4;
crypto_int64 f3g5_2 = f3_2 * (crypto_int64) g5;
crypto_int64 f3g6 = f3 * (crypto_int64) g6;
crypto_int64 f3g7_38 = f3_2 * (crypto_int64) g7_19;
crypto_int64 f3g8_19 = f3 * (crypto_int64) g8_19;
crypto_int64 f3g9_38 = f3_2 * (crypto_int64) g9_19;
crypto_int64 f4g0 = f4 * (crypto_int64) g0;
crypto_int64 f4g1 = f4 * (crypto_int64) g1;
crypto_int64 f4g2 = f4 * (crypto_int64) g2;
crypto_int64 f4g3 = f4 * (crypto_int64) g3;
crypto_int64 f4g4 = f4 * (crypto_int64) g4;
crypto_int64 f4g5 = f4 * (crypto_int64) g5;
crypto_int64 f4g6_19 = f4 * (crypto_int64) g6_19;
crypto_int64 f4g7_19 = f4 * (crypto_int64) g7_19;
crypto_int64 f4g8_19 = f4 * (crypto_int64) g8_19;
crypto_int64 f4g9_19 = f4 * (crypto_int64) g9_19;
crypto_int64 f5g0 = f5 * (crypto_int64) g0;
crypto_int64 f5g1_2 = f5_2 * (crypto_int64) g1;
crypto_int64 f5g2 = f5 * (crypto_int64) g2;
crypto_int64 f5g3_2 = f5_2 * (crypto_int64) g3;
crypto_int64 f5g4 = f5 * (crypto_int64) g4;
crypto_int64 f5g5_38 = f5_2 * (crypto_int64) g5_19;
crypto_int64 f5g6_19 = f5 * (crypto_int64) g6_19;
crypto_int64 f5g7_38 = f5_2 * (crypto_int64) g7_19;
crypto_int64 f5g8_19 = f5 * (crypto_int64) g8_19;
crypto_int64 f5g9_38 = f5_2 * (crypto_int64) g9_19;
crypto_int64 f6g0 = f6 * (crypto_int64) g0;
crypto_int64 f6g1 = f6 * (crypto_int64) g1;
crypto_int64 f6g2 = f6 * (crypto_int64) g2;
crypto_int64 f6g3 = f6 * (crypto_int64) g3;
crypto_int64 f6g4_19 = f6 * (crypto_int64) g4_19;
crypto_int64 f6g5_19 = f6 * (crypto_int64) g5_19;
crypto_int64 f6g6_19 = f6 * (crypto_int64) g6_19;
crypto_int64 f6g7_19 = f6 * (crypto_int64) g7_19;
crypto_int64 f6g8_19 = f6 * (crypto_int64) g8_19;
crypto_int64 f6g9_19 = f6 * (crypto_int64) g9_19;
crypto_int64 f7g0 = f7 * (crypto_int64) g0;
crypto_int64 f7g1_2 = f7_2 * (crypto_int64) g1;
crypto_int64 f7g2 = f7 * (crypto_int64) g2;
crypto_int64 f7g3_38 = f7_2 * (crypto_int64) g3_19;
crypto_int64 f7g4_19 = f7 * (crypto_int64) g4_19;
crypto_int64 f7g5_38 = f7_2 * (crypto_int64) g5_19;
crypto_int64 f7g6_19 = f7 * (crypto_int64) g6_19;
crypto_int64 f7g7_38 = f7_2 * (crypto_int64) g7_19;
crypto_int64 f7g8_19 = f7 * (crypto_int64) g8_19;
crypto_int64 f7g9_38 = f7_2 * (crypto_int64) g9_19;
crypto_int64 f8g0 = f8 * (crypto_int64) g0;
crypto_int64 f8g1 = f8 * (crypto_int64) g1;
crypto_int64 f8g2_19 = f8 * (crypto_int64) g2_19;
crypto_int64 f8g3_19 = f8 * (crypto_int64) g3_19;
crypto_int64 f8g4_19 = f8 * (crypto_int64) g4_19;
crypto_int64 f8g5_19 = f8 * (crypto_int64) g5_19;
crypto_int64 f8g6_19 = f8 * (crypto_int64) g6_19;
crypto_int64 f8g7_19 = f8 * (crypto_int64) g7_19;
crypto_int64 f8g8_19 = f8 * (crypto_int64) g8_19;
crypto_int64 f8g9_19 = f8 * (crypto_int64) g9_19;
crypto_int64 f9g0 = f9 * (crypto_int64) g0;
crypto_int64 f9g1_38 = f9_2 * (crypto_int64) g1_19;
crypto_int64 f9g2_19 = f9 * (crypto_int64) g2_19;
crypto_int64 f9g3_38 = f9_2 * (crypto_int64) g3_19;
crypto_int64 f9g4_19 = f9 * (crypto_int64) g4_19;
crypto_int64 f9g5_38 = f9_2 * (crypto_int64) g5_19;
crypto_int64 f9g6_19 = f9 * (crypto_int64) g6_19;
crypto_int64 f9g7_38 = f9_2 * (crypto_int64) g7_19;
crypto_int64 f9g8_19 = f9 * (crypto_int64) g8_19;
crypto_int64 f9g9_38 = f9_2 * (crypto_int64) g9_19;
crypto_int64 h0 = f0g0+f1g9_38+f2g8_19+f3g7_38+f4g6_19+f5g5_38+f6g4_19+f7g3_38+f8g2_19+f9g1_38;
crypto_int64 h1 = f0g1+f1g0 +f2g9_19+f3g8_19+f4g7_19+f5g6_19+f6g5_19+f7g4_19+f8g3_19+f9g2_19;
crypto_int64 h2 = f0g2+f1g1_2 +f2g0 +f3g9_38+f4g8_19+f5g7_38+f6g6_19+f7g5_38+f8g4_19+f9g3_38;
crypto_int64 h3 = f0g3+f1g2 +f2g1 +f3g0 +f4g9_19+f5g8_19+f6g7_19+f7g6_19+f8g5_19+f9g4_19;
crypto_int64 h4 = f0g4+f1g3_2 +f2g2 +f3g1_2 +f4g0 +f5g9_38+f6g8_19+f7g7_38+f8g6_19+f9g5_38;
crypto_int64 h5 = f0g5+f1g4 +f2g3 +f3g2 +f4g1 +f5g0 +f6g9_19+f7g8_19+f8g7_19+f9g6_19;
crypto_int64 h6 = f0g6+f1g5_2 +f2g4 +f3g3_2 +f4g2 +f5g1_2 +f6g0 +f7g9_38+f8g8_19+f9g7_38;
crypto_int64 h7 = f0g7+f1g6 +f2g5 +f3g4 +f4g3 +f5g2 +f6g1 +f7g0 +f8g9_19+f9g8_19;
crypto_int64 h8 = f0g8+f1g7_2 +f2g6 +f3g5_2 +f4g4 +f5g3_2 +f6g2 +f7g1_2 +f8g0 +f9g9_38;
crypto_int64 h9 = f0g9+f1g8 +f2g7 +f3g6 +f4g5 +f5g4 +f6g3 +f7g2 +f8g1 +f9g0 ;
crypto_int64 carry0;
crypto_int64 carry1;
crypto_int64 carry2;
crypto_int64 carry3;
crypto_int64 carry4;
crypto_int64 carry5;
crypto_int64 carry6;
crypto_int64 carry7;
crypto_int64 carry8;
crypto_int64 carry9;
/*
|h0| <= (1.65*1.65*2^52*(1+19+19+19+19)+1.65*1.65*2^50*(38+38+38+38+38))
i.e. |h0| <= 1.4*2^60; narrower ranges for h2, h4, h6, h8
|h1| <= (1.65*1.65*2^51*(1+1+19+19+19+19+19+19+19+19))
i.e. |h1| <= 1.7*2^59; narrower ranges for h3, h5, h7, h9
*/
carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
/* |h0| <= 2^25 */
/* |h4| <= 2^25 */
/* |h1| <= 1.71*2^59 */
/* |h5| <= 1.71*2^59 */
carry1 = (h1 + (crypto_int64) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry5 = (h5 + (crypto_int64) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
/* |h1| <= 2^24; from now on fits into int32 */
/* |h5| <= 2^24; from now on fits into int32 */
/* |h2| <= 1.41*2^60 */
/* |h6| <= 1.41*2^60 */
carry2 = (h2 + (crypto_int64) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry6 = (h6 + (crypto_int64) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
/* |h2| <= 2^25; from now on fits into int32 unchanged */
/* |h6| <= 2^25; from now on fits into int32 unchanged */
/* |h3| <= 1.71*2^59 */
/* |h7| <= 1.71*2^59 */
carry3 = (h3 + (crypto_int64) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry7 = (h7 + (crypto_int64) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
/* |h3| <= 2^24; from now on fits into int32 unchanged */
/* |h7| <= 2^24; from now on fits into int32 unchanged */
/* |h4| <= 1.72*2^34 */
/* |h8| <= 1.41*2^60 */
carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry8 = (h8 + (crypto_int64) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
/* |h4| <= 2^25; from now on fits into int32 unchanged */
/* |h8| <= 2^25; from now on fits into int32 unchanged */
/* |h5| <= 1.01*2^24 */
/* |h9| <= 1.71*2^59 */
carry9 = (h9 + (crypto_int64) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
/* |h9| <= 2^24; from now on fits into int32 unchanged */
/* |h0| <= 1.1*2^39 */
carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
/* |h0| <= 2^25; from now on fits into int32 unchanged */
/* |h1| <= 1.01*2^24 */
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}

View file

@ -0,0 +1,45 @@
#include "fe.h"
/*
h = -f
Preconditions:
|f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
Postconditions:
|h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
*/
void fe_neg(fe h,const fe f)
{
crypto_int32 f0 = f[0];
crypto_int32 f1 = f[1];
crypto_int32 f2 = f[2];
crypto_int32 f3 = f[3];
crypto_int32 f4 = f[4];
crypto_int32 f5 = f[5];
crypto_int32 f6 = f[6];
crypto_int32 f7 = f[7];
crypto_int32 f8 = f[8];
crypto_int32 f9 = f[9];
crypto_int32 h0 = -f0;
crypto_int32 h1 = -f1;
crypto_int32 h2 = -f2;
crypto_int32 h3 = -f3;
crypto_int32 h4 = -f4;
crypto_int32 h5 = -f5;
crypto_int32 h6 = -f6;
crypto_int32 h7 = -f7;
crypto_int32 h8 = -f8;
crypto_int32 h9 = -f9;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}

View file

@ -0,0 +1,13 @@
#include "fe.h"
void fe_pow22523(fe out,const fe z)
{
fe t0;
fe t1;
fe t2;
int i;
#include "pow22523.h"
return;
}

View file

@ -0,0 +1,149 @@
#include "fe.h"
#include "crypto_int64.h"
/*
h = f * f
Can overlap h with f.
Preconditions:
|f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
Postconditions:
|h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
*/
/*
See fe_mul.c for discussion of implementation strategy.
*/
void fe_sq(fe h,const fe f)
{
crypto_int32 f0 = f[0];
crypto_int32 f1 = f[1];
crypto_int32 f2 = f[2];
crypto_int32 f3 = f[3];
crypto_int32 f4 = f[4];
crypto_int32 f5 = f[5];
crypto_int32 f6 = f[6];
crypto_int32 f7 = f[7];
crypto_int32 f8 = f[8];
crypto_int32 f9 = f[9];
crypto_int32 f0_2 = 2 * f0;
crypto_int32 f1_2 = 2 * f1;
crypto_int32 f2_2 = 2 * f2;
crypto_int32 f3_2 = 2 * f3;
crypto_int32 f4_2 = 2 * f4;
crypto_int32 f5_2 = 2 * f5;
crypto_int32 f6_2 = 2 * f6;
crypto_int32 f7_2 = 2 * f7;
crypto_int32 f5_38 = 38 * f5; /* 1.959375*2^30 */
crypto_int32 f6_19 = 19 * f6; /* 1.959375*2^30 */
crypto_int32 f7_38 = 38 * f7; /* 1.959375*2^30 */
crypto_int32 f8_19 = 19 * f8; /* 1.959375*2^30 */
crypto_int32 f9_38 = 38 * f9; /* 1.959375*2^30 */
crypto_int64 f0f0 = f0 * (crypto_int64) f0;
crypto_int64 f0f1_2 = f0_2 * (crypto_int64) f1;
crypto_int64 f0f2_2 = f0_2 * (crypto_int64) f2;
crypto_int64 f0f3_2 = f0_2 * (crypto_int64) f3;
crypto_int64 f0f4_2 = f0_2 * (crypto_int64) f4;
crypto_int64 f0f5_2 = f0_2 * (crypto_int64) f5;
crypto_int64 f0f6_2 = f0_2 * (crypto_int64) f6;
crypto_int64 f0f7_2 = f0_2 * (crypto_int64) f7;
crypto_int64 f0f8_2 = f0_2 * (crypto_int64) f8;
crypto_int64 f0f9_2 = f0_2 * (crypto_int64) f9;
crypto_int64 f1f1_2 = f1_2 * (crypto_int64) f1;
crypto_int64 f1f2_2 = f1_2 * (crypto_int64) f2;
crypto_int64 f1f3_4 = f1_2 * (crypto_int64) f3_2;
crypto_int64 f1f4_2 = f1_2 * (crypto_int64) f4;
crypto_int64 f1f5_4 = f1_2 * (crypto_int64) f5_2;
crypto_int64 f1f6_2 = f1_2 * (crypto_int64) f6;
crypto_int64 f1f7_4 = f1_2 * (crypto_int64) f7_2;
crypto_int64 f1f8_2 = f1_2 * (crypto_int64) f8;
crypto_int64 f1f9_76 = f1_2 * (crypto_int64) f9_38;
crypto_int64 f2f2 = f2 * (crypto_int64) f2;
crypto_int64 f2f3_2 = f2_2 * (crypto_int64) f3;
crypto_int64 f2f4_2 = f2_2 * (crypto_int64) f4;
crypto_int64 f2f5_2 = f2_2 * (crypto_int64) f5;
crypto_int64 f2f6_2 = f2_2 * (crypto_int64) f6;
crypto_int64 f2f7_2 = f2_2 * (crypto_int64) f7;
crypto_int64 f2f8_38 = f2_2 * (crypto_int64) f8_19;
crypto_int64 f2f9_38 = f2 * (crypto_int64) f9_38;
crypto_int64 f3f3_2 = f3_2 * (crypto_int64) f3;
crypto_int64 f3f4_2 = f3_2 * (crypto_int64) f4;
crypto_int64 f3f5_4 = f3_2 * (crypto_int64) f5_2;
crypto_int64 f3f6_2 = f3_2 * (crypto_int64) f6;
crypto_int64 f3f7_76 = f3_2 * (crypto_int64) f7_38;
crypto_int64 f3f8_38 = f3_2 * (crypto_int64) f8_19;
crypto_int64 f3f9_76 = f3_2 * (crypto_int64) f9_38;
crypto_int64 f4f4 = f4 * (crypto_int64) f4;
crypto_int64 f4f5_2 = f4_2 * (crypto_int64) f5;
crypto_int64 f4f6_38 = f4_2 * (crypto_int64) f6_19;
crypto_int64 f4f7_38 = f4 * (crypto_int64) f7_38;
crypto_int64 f4f8_38 = f4_2 * (crypto_int64) f8_19;
crypto_int64 f4f9_38 = f4 * (crypto_int64) f9_38;
crypto_int64 f5f5_38 = f5 * (crypto_int64) f5_38;
crypto_int64 f5f6_38 = f5_2 * (crypto_int64) f6_19;
crypto_int64 f5f7_76 = f5_2 * (crypto_int64) f7_38;
crypto_int64 f5f8_38 = f5_2 * (crypto_int64) f8_19;
crypto_int64 f5f9_76 = f5_2 * (crypto_int64) f9_38;
crypto_int64 f6f6_19 = f6 * (crypto_int64) f6_19;
crypto_int64 f6f7_38 = f6 * (crypto_int64) f7_38;
crypto_int64 f6f8_38 = f6_2 * (crypto_int64) f8_19;
crypto_int64 f6f9_38 = f6 * (crypto_int64) f9_38;
crypto_int64 f7f7_38 = f7 * (crypto_int64) f7_38;
crypto_int64 f7f8_38 = f7_2 * (crypto_int64) f8_19;
crypto_int64 f7f9_76 = f7_2 * (crypto_int64) f9_38;
crypto_int64 f8f8_19 = f8 * (crypto_int64) f8_19;
crypto_int64 f8f9_38 = f8 * (crypto_int64) f9_38;
crypto_int64 f9f9_38 = f9 * (crypto_int64) f9_38;
crypto_int64 h0 = f0f0 +f1f9_76+f2f8_38+f3f7_76+f4f6_38+f5f5_38;
crypto_int64 h1 = f0f1_2+f2f9_38+f3f8_38+f4f7_38+f5f6_38;
crypto_int64 h2 = f0f2_2+f1f1_2 +f3f9_76+f4f8_38+f5f7_76+f6f6_19;
crypto_int64 h3 = f0f3_2+f1f2_2 +f4f9_38+f5f8_38+f6f7_38;
crypto_int64 h4 = f0f4_2+f1f3_4 +f2f2 +f5f9_76+f6f8_38+f7f7_38;
crypto_int64 h5 = f0f5_2+f1f4_2 +f2f3_2 +f6f9_38+f7f8_38;
crypto_int64 h6 = f0f6_2+f1f5_4 +f2f4_2 +f3f3_2 +f7f9_76+f8f8_19;
crypto_int64 h7 = f0f7_2+f1f6_2 +f2f5_2 +f3f4_2 +f8f9_38;
crypto_int64 h8 = f0f8_2+f1f7_4 +f2f6_2 +f3f5_4 +f4f4 +f9f9_38;
crypto_int64 h9 = f0f9_2+f1f8_2 +f2f7_2 +f3f6_2 +f4f5_2;
crypto_int64 carry0;
crypto_int64 carry1;
crypto_int64 carry2;
crypto_int64 carry3;
crypto_int64 carry4;
crypto_int64 carry5;
crypto_int64 carry6;
crypto_int64 carry7;
crypto_int64 carry8;
crypto_int64 carry9;
carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry1 = (h1 + (crypto_int64) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry5 = (h5 + (crypto_int64) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
carry2 = (h2 + (crypto_int64) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry6 = (h6 + (crypto_int64) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
carry3 = (h3 + (crypto_int64) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry7 = (h7 + (crypto_int64) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry8 = (h8 + (crypto_int64) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
carry9 = (h9 + (crypto_int64) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}

View file

@ -0,0 +1,160 @@
#include "fe.h"
#include "crypto_int64.h"
/*
h = 2 * f * f
Can overlap h with f.
Preconditions:
|f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
Postconditions:
|h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
*/
/*
See fe_mul.c for discussion of implementation strategy.
*/
void fe_sq2(fe h,const fe f)
{
crypto_int32 f0 = f[0];
crypto_int32 f1 = f[1];
crypto_int32 f2 = f[2];
crypto_int32 f3 = f[3];
crypto_int32 f4 = f[4];
crypto_int32 f5 = f[5];
crypto_int32 f6 = f[6];
crypto_int32 f7 = f[7];
crypto_int32 f8 = f[8];
crypto_int32 f9 = f[9];
crypto_int32 f0_2 = 2 * f0;
crypto_int32 f1_2 = 2 * f1;
crypto_int32 f2_2 = 2 * f2;
crypto_int32 f3_2 = 2 * f3;
crypto_int32 f4_2 = 2 * f4;
crypto_int32 f5_2 = 2 * f5;
crypto_int32 f6_2 = 2 * f6;
crypto_int32 f7_2 = 2 * f7;
crypto_int32 f5_38 = 38 * f5; /* 1.959375*2^30 */
crypto_int32 f6_19 = 19 * f6; /* 1.959375*2^30 */
crypto_int32 f7_38 = 38 * f7; /* 1.959375*2^30 */
crypto_int32 f8_19 = 19 * f8; /* 1.959375*2^30 */
crypto_int32 f9_38 = 38 * f9; /* 1.959375*2^30 */
crypto_int64 f0f0 = f0 * (crypto_int64) f0;
crypto_int64 f0f1_2 = f0_2 * (crypto_int64) f1;
crypto_int64 f0f2_2 = f0_2 * (crypto_int64) f2;
crypto_int64 f0f3_2 = f0_2 * (crypto_int64) f3;
crypto_int64 f0f4_2 = f0_2 * (crypto_int64) f4;
crypto_int64 f0f5_2 = f0_2 * (crypto_int64) f5;
crypto_int64 f0f6_2 = f0_2 * (crypto_int64) f6;
crypto_int64 f0f7_2 = f0_2 * (crypto_int64) f7;
crypto_int64 f0f8_2 = f0_2 * (crypto_int64) f8;
crypto_int64 f0f9_2 = f0_2 * (crypto_int64) f9;
crypto_int64 f1f1_2 = f1_2 * (crypto_int64) f1;
crypto_int64 f1f2_2 = f1_2 * (crypto_int64) f2;
crypto_int64 f1f3_4 = f1_2 * (crypto_int64) f3_2;
crypto_int64 f1f4_2 = f1_2 * (crypto_int64) f4;
crypto_int64 f1f5_4 = f1_2 * (crypto_int64) f5_2;
crypto_int64 f1f6_2 = f1_2 * (crypto_int64) f6;
crypto_int64 f1f7_4 = f1_2 * (crypto_int64) f7_2;
crypto_int64 f1f8_2 = f1_2 * (crypto_int64) f8;
crypto_int64 f1f9_76 = f1_2 * (crypto_int64) f9_38;
crypto_int64 f2f2 = f2 * (crypto_int64) f2;
crypto_int64 f2f3_2 = f2_2 * (crypto_int64) f3;
crypto_int64 f2f4_2 = f2_2 * (crypto_int64) f4;
crypto_int64 f2f5_2 = f2_2 * (crypto_int64) f5;
crypto_int64 f2f6_2 = f2_2 * (crypto_int64) f6;
crypto_int64 f2f7_2 = f2_2 * (crypto_int64) f7;
crypto_int64 f2f8_38 = f2_2 * (crypto_int64) f8_19;
crypto_int64 f2f9_38 = f2 * (crypto_int64) f9_38;
crypto_int64 f3f3_2 = f3_2 * (crypto_int64) f3;
crypto_int64 f3f4_2 = f3_2 * (crypto_int64) f4;
crypto_int64 f3f5_4 = f3_2 * (crypto_int64) f5_2;
crypto_int64 f3f6_2 = f3_2 * (crypto_int64) f6;
crypto_int64 f3f7_76 = f3_2 * (crypto_int64) f7_38;
crypto_int64 f3f8_38 = f3_2 * (crypto_int64) f8_19;
crypto_int64 f3f9_76 = f3_2 * (crypto_int64) f9_38;
crypto_int64 f4f4 = f4 * (crypto_int64) f4;
crypto_int64 f4f5_2 = f4_2 * (crypto_int64) f5;
crypto_int64 f4f6_38 = f4_2 * (crypto_int64) f6_19;
crypto_int64 f4f7_38 = f4 * (crypto_int64) f7_38;
crypto_int64 f4f8_38 = f4_2 * (crypto_int64) f8_19;
crypto_int64 f4f9_38 = f4 * (crypto_int64) f9_38;
crypto_int64 f5f5_38 = f5 * (crypto_int64) f5_38;
crypto_int64 f5f6_38 = f5_2 * (crypto_int64) f6_19;
crypto_int64 f5f7_76 = f5_2 * (crypto_int64) f7_38;
crypto_int64 f5f8_38 = f5_2 * (crypto_int64) f8_19;
crypto_int64 f5f9_76 = f5_2 * (crypto_int64) f9_38;
crypto_int64 f6f6_19 = f6 * (crypto_int64) f6_19;
crypto_int64 f6f7_38 = f6 * (crypto_int64) f7_38;
crypto_int64 f6f8_38 = f6_2 * (crypto_int64) f8_19;
crypto_int64 f6f9_38 = f6 * (crypto_int64) f9_38;
crypto_int64 f7f7_38 = f7 * (crypto_int64) f7_38;
crypto_int64 f7f8_38 = f7_2 * (crypto_int64) f8_19;
crypto_int64 f7f9_76 = f7_2 * (crypto_int64) f9_38;
crypto_int64 f8f8_19 = f8 * (crypto_int64) f8_19;
crypto_int64 f8f9_38 = f8 * (crypto_int64) f9_38;
crypto_int64 f9f9_38 = f9 * (crypto_int64) f9_38;
crypto_int64 h0 = f0f0 +f1f9_76+f2f8_38+f3f7_76+f4f6_38+f5f5_38;
crypto_int64 h1 = f0f1_2+f2f9_38+f3f8_38+f4f7_38+f5f6_38;
crypto_int64 h2 = f0f2_2+f1f1_2 +f3f9_76+f4f8_38+f5f7_76+f6f6_19;
crypto_int64 h3 = f0f3_2+f1f2_2 +f4f9_38+f5f8_38+f6f7_38;
crypto_int64 h4 = f0f4_2+f1f3_4 +f2f2 +f5f9_76+f6f8_38+f7f7_38;
crypto_int64 h5 = f0f5_2+f1f4_2 +f2f3_2 +f6f9_38+f7f8_38;
crypto_int64 h6 = f0f6_2+f1f5_4 +f2f4_2 +f3f3_2 +f7f9_76+f8f8_19;
crypto_int64 h7 = f0f7_2+f1f6_2 +f2f5_2 +f3f4_2 +f8f9_38;
crypto_int64 h8 = f0f8_2+f1f7_4 +f2f6_2 +f3f5_4 +f4f4 +f9f9_38;
crypto_int64 h9 = f0f9_2+f1f8_2 +f2f7_2 +f3f6_2 +f4f5_2;
crypto_int64 carry0;
crypto_int64 carry1;
crypto_int64 carry2;
crypto_int64 carry3;
crypto_int64 carry4;
crypto_int64 carry5;
crypto_int64 carry6;
crypto_int64 carry7;
crypto_int64 carry8;
crypto_int64 carry9;
h0 += h0;
h1 += h1;
h2 += h2;
h3 += h3;
h4 += h4;
h5 += h5;
h6 += h6;
h7 += h7;
h8 += h8;
h9 += h9;
carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry1 = (h1 + (crypto_int64) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
carry5 = (h5 + (crypto_int64) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
carry2 = (h2 + (crypto_int64) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
carry6 = (h6 + (crypto_int64) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
carry3 = (h3 + (crypto_int64) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
carry7 = (h7 + (crypto_int64) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
carry4 = (h4 + (crypto_int64) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
carry8 = (h8 + (crypto_int64) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
carry9 = (h9 + (crypto_int64) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
carry0 = (h0 + (crypto_int64) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}

View file

@ -0,0 +1,57 @@
#include "fe.h"
/*
h = f - g
Can overlap h with f or g.
Preconditions:
|f| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
|g| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
Postconditions:
|h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
*/
void fe_sub(fe h,const fe f,const fe g)
{
crypto_int32 f0 = f[0];
crypto_int32 f1 = f[1];
crypto_int32 f2 = f[2];
crypto_int32 f3 = f[3];
crypto_int32 f4 = f[4];
crypto_int32 f5 = f[5];
crypto_int32 f6 = f[6];
crypto_int32 f7 = f[7];
crypto_int32 f8 = f[8];
crypto_int32 f9 = f[9];
crypto_int32 g0 = g[0];
crypto_int32 g1 = g[1];
crypto_int32 g2 = g[2];
crypto_int32 g3 = g[3];
crypto_int32 g4 = g[4];
crypto_int32 g5 = g[5];
crypto_int32 g6 = g[6];
crypto_int32 g7 = g[7];
crypto_int32 g8 = g[8];
crypto_int32 g9 = g[9];
crypto_int32 h0 = f0 - g0;
crypto_int32 h1 = f1 - g1;
crypto_int32 h2 = f2 - g2;
crypto_int32 h3 = f3 - g3;
crypto_int32 h4 = f4 - g4;
crypto_int32 h5 = f5 - g5;
crypto_int32 h6 = f6 - g6;
crypto_int32 h7 = f7 - g7;
crypto_int32 h8 = f8 - g8;
crypto_int32 h9 = f9 - g9;
h[0] = h0;
h[1] = h1;
h[2] = h2;
h[3] = h3;
h[4] = h4;
h[5] = h5;
h[6] = h6;
h[7] = h7;
h[8] = h8;
h[9] = h9;
}

View file

@ -0,0 +1,119 @@
#include "fe.h"
/*
Preconditions:
|h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
Write p=2^255-19; q=floor(h/p).
Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
Proof:
Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
Also have |h-2^230 h9|<2^231 so |19 2^(-255)(h-2^230 h9)|<1/4.
Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
Then 0<y<1.
Write r=h-pq.
Have 0<=r<=p-1=2^255-20.
Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
Write x=r+19(2^-255)r+y.
Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
*/
void fe_tobytes(unsigned char *s,const fe h)
{
crypto_int32 h0 = h[0];
crypto_int32 h1 = h[1];
crypto_int32 h2 = h[2];
crypto_int32 h3 = h[3];
crypto_int32 h4 = h[4];
crypto_int32 h5 = h[5];
crypto_int32 h6 = h[6];
crypto_int32 h7 = h[7];
crypto_int32 h8 = h[8];
crypto_int32 h9 = h[9];
crypto_int32 q;
crypto_int32 carry0;
crypto_int32 carry1;
crypto_int32 carry2;
crypto_int32 carry3;
crypto_int32 carry4;
crypto_int32 carry5;
crypto_int32 carry6;
crypto_int32 carry7;
crypto_int32 carry8;
crypto_int32 carry9;
q = (19 * h9 + (((crypto_int32) 1) << 24)) >> 25;
q = (h0 + q) >> 26;
q = (h1 + q) >> 25;
q = (h2 + q) >> 26;
q = (h3 + q) >> 25;
q = (h4 + q) >> 26;
q = (h5 + q) >> 25;
q = (h6 + q) >> 26;
q = (h7 + q) >> 25;
q = (h8 + q) >> 26;
q = (h9 + q) >> 25;
/* Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. */
h0 += 19 * q;
/* Goal: Output h-2^255 q, which is between 0 and 2^255-20. */
carry0 = h0 >> 26; h1 += carry0; h0 -= carry0 << 26;
carry1 = h1 >> 25; h2 += carry1; h1 -= carry1 << 25;
carry2 = h2 >> 26; h3 += carry2; h2 -= carry2 << 26;
carry3 = h3 >> 25; h4 += carry3; h3 -= carry3 << 25;
carry4 = h4 >> 26; h5 += carry4; h4 -= carry4 << 26;
carry5 = h5 >> 25; h6 += carry5; h5 -= carry5 << 25;
carry6 = h6 >> 26; h7 += carry6; h6 -= carry6 << 26;
carry7 = h7 >> 25; h8 += carry7; h7 -= carry7 << 25;
carry8 = h8 >> 26; h9 += carry8; h8 -= carry8 << 26;
carry9 = h9 >> 25; h9 -= carry9 << 25;
/* h10 = carry9 */
/*
Goal: Output h0+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
Have h0+...+2^230 h9 between 0 and 2^255-1;
evidently 2^255 h10-2^255 q = 0.
Goal: Output h0+...+2^230 h9.
*/
s[0] = h0 >> 0;
s[1] = h0 >> 8;
s[2] = h0 >> 16;
s[3] = (h0 >> 24) | (h1 << 2);
s[4] = h1 >> 6;
s[5] = h1 >> 14;
s[6] = (h1 >> 22) | (h2 << 3);
s[7] = h2 >> 5;
s[8] = h2 >> 13;
s[9] = (h2 >> 21) | (h3 << 5);
s[10] = h3 >> 3;
s[11] = h3 >> 11;
s[12] = (h3 >> 19) | (h4 << 6);
s[13] = h4 >> 2;
s[14] = h4 >> 10;
s[15] = h4 >> 18;
s[16] = h5 >> 0;
s[17] = h5 >> 8;
s[18] = h5 >> 16;
s[19] = (h5 >> 24) | (h6 << 1);
s[20] = h6 >> 7;
s[21] = h6 >> 15;
s[22] = (h6 >> 23) | (h7 << 3);
s[23] = h7 >> 5;
s[24] = h7 >> 13;
s[25] = (h7 >> 21) | (h8 << 4);
s[26] = h8 >> 4;
s[27] = h8 >> 12;
s[28] = (h8 >> 20) | (h9 << 6);
s[29] = h9 >> 2;
s[30] = h9 >> 10;
s[31] = h9 >> 18;
}

View file

@ -0,0 +1,95 @@
#ifndef GE_H
#define GE_H
/*
ge means group element.
Here the group is the set of pairs (x,y) of field elements (see fe.h)
satisfying -x^2 + y^2 = 1 + d x^2y^2
where d = -121665/121666.
Representations:
ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/Z
ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT
ge_p1p1 (completed): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T
ge_precomp (Duif): (y+x,y-x,2dxy)
*/
#include "fe.h"
typedef struct {
fe X;
fe Y;
fe Z;
} ge_p2;
typedef struct {
fe X;
fe Y;
fe Z;
fe T;
} ge_p3;
typedef struct {
fe X;
fe Y;
fe Z;
fe T;
} ge_p1p1;
typedef struct {
fe yplusx;
fe yminusx;
fe xy2d;
} ge_precomp;
typedef struct {
fe YplusX;
fe YminusX;
fe Z;
fe T2d;
} ge_cached;
#define ge_frombytes_negate_vartime crypto_sign_ed25519_ref10_ge_frombytes_negate_vartime
#define ge_tobytes crypto_sign_ed25519_ref10_ge_tobytes
#define ge_p3_tobytes crypto_sign_ed25519_ref10_ge_p3_tobytes
#define ge_p2_0 crypto_sign_ed25519_ref10_ge_p2_0
#define ge_p3_0 crypto_sign_ed25519_ref10_ge_p3_0
#define ge_precomp_0 crypto_sign_ed25519_ref10_ge_precomp_0
#define ge_p3_to_p2 crypto_sign_ed25519_ref10_ge_p3_to_p2
#define ge_p3_to_cached crypto_sign_ed25519_ref10_ge_p3_to_cached
#define ge_p1p1_to_p2 crypto_sign_ed25519_ref10_ge_p1p1_to_p2
#define ge_p1p1_to_p3 crypto_sign_ed25519_ref10_ge_p1p1_to_p3
#define ge_p2_dbl crypto_sign_ed25519_ref10_ge_p2_dbl
#define ge_p3_dbl crypto_sign_ed25519_ref10_ge_p3_dbl
#define ge_madd crypto_sign_ed25519_ref10_ge_madd
#define ge_msub crypto_sign_ed25519_ref10_ge_msub
#define ge_add crypto_sign_ed25519_ref10_ge_add
#define ge_sub crypto_sign_ed25519_ref10_ge_sub
#define ge_scalarmult_base crypto_sign_ed25519_ref10_ge_scalarmult_base
#define ge_double_scalarmult_vartime crypto_sign_ed25519_ref10_ge_double_scalarmult_vartime
extern void ge_tobytes(unsigned char *,const ge_p2 *);
extern void ge_p3_tobytes(unsigned char *,const ge_p3 *);
extern int ge_frombytes_negate_vartime(ge_p3 *,const unsigned char *);
extern void ge_p2_0(ge_p2 *);
extern void ge_p3_0(ge_p3 *);
extern void ge_precomp_0(ge_precomp *);
extern void ge_p3_to_p2(ge_p2 *,const ge_p3 *);
extern void ge_p3_to_cached(ge_cached *,const ge_p3 *);
extern void ge_p1p1_to_p2(ge_p2 *,const ge_p1p1 *);
extern void ge_p1p1_to_p3(ge_p3 *,const ge_p1p1 *);
extern void ge_p2_dbl(ge_p1p1 *,const ge_p2 *);
extern void ge_p3_dbl(ge_p1p1 *,const ge_p3 *);
extern void ge_madd(ge_p1p1 *,const ge_p3 *,const ge_precomp *);
extern void ge_msub(ge_p1p1 *,const ge_p3 *,const ge_precomp *);
extern void ge_add(ge_p1p1 *,const ge_p3 *,const ge_cached *);
extern void ge_sub(ge_p1p1 *,const ge_p3 *,const ge_cached *);
extern void ge_scalarmult_base(ge_p3 *,const unsigned char *);
extern void ge_double_scalarmult_vartime(ge_p2 *,const unsigned char *,const ge_p3 *,const unsigned char *);
#endif

View file

@ -0,0 +1,11 @@
#include "ge.h"
/*
r = p + q
*/
void ge_add(ge_p1p1 *r,const ge_p3 *p,const ge_cached *q)
{
fe t0;
#include "ge_add.h"
}

View file

@ -0,0 +1,97 @@
/* qhasm: enter ge_add */
/* qhasm: fe X1 */
/* qhasm: fe Y1 */
/* qhasm: fe Z1 */
/* qhasm: fe Z2 */
/* qhasm: fe T1 */
/* qhasm: fe ZZ */
/* qhasm: fe YpX2 */
/* qhasm: fe YmX2 */
/* qhasm: fe T2d2 */
/* qhasm: fe X3 */
/* qhasm: fe Y3 */
/* qhasm: fe Z3 */
/* qhasm: fe T3 */
/* qhasm: fe YpX1 */
/* qhasm: fe YmX1 */
/* qhasm: fe A */
/* qhasm: fe B */
/* qhasm: fe C */
/* qhasm: fe D */
/* qhasm: YpX1 = Y1+X1 */
/* asm 1: fe_add(>YpX1=fe#1,<Y1=fe#12,<X1=fe#11); */
/* asm 2: fe_add(>YpX1=r->X,<Y1=p->Y,<X1=p->X); */
fe_add(r->X,p->Y,p->X);
/* qhasm: YmX1 = Y1-X1 */
/* asm 1: fe_sub(>YmX1=fe#2,<Y1=fe#12,<X1=fe#11); */
/* asm 2: fe_sub(>YmX1=r->Y,<Y1=p->Y,<X1=p->X); */
fe_sub(r->Y,p->Y,p->X);
/* qhasm: A = YpX1*YpX2 */
/* asm 1: fe_mul(>A=fe#3,<YpX1=fe#1,<YpX2=fe#15); */
/* asm 2: fe_mul(>A=r->Z,<YpX1=r->X,<YpX2=q->YplusX); */
fe_mul(r->Z,r->X,q->YplusX);
/* qhasm: B = YmX1*YmX2 */
/* asm 1: fe_mul(>B=fe#2,<YmX1=fe#2,<YmX2=fe#16); */
/* asm 2: fe_mul(>B=r->Y,<YmX1=r->Y,<YmX2=q->YminusX); */
fe_mul(r->Y,r->Y,q->YminusX);
/* qhasm: C = T2d2*T1 */
/* asm 1: fe_mul(>C=fe#4,<T2d2=fe#18,<T1=fe#14); */
/* asm 2: fe_mul(>C=r->T,<T2d2=q->T2d,<T1=p->T); */
fe_mul(r->T,q->T2d,p->T);
/* qhasm: ZZ = Z1*Z2 */
/* asm 1: fe_mul(>ZZ=fe#1,<Z1=fe#13,<Z2=fe#17); */
/* asm 2: fe_mul(>ZZ=r->X,<Z1=p->Z,<Z2=q->Z); */
fe_mul(r->X,p->Z,q->Z);
/* qhasm: D = 2*ZZ */
/* asm 1: fe_add(>D=fe#5,<ZZ=fe#1,<ZZ=fe#1); */
/* asm 2: fe_add(>D=t0,<ZZ=r->X,<ZZ=r->X); */
fe_add(t0,r->X,r->X);
/* qhasm: X3 = A-B */
/* asm 1: fe_sub(>X3=fe#1,<A=fe#3,<B=fe#2); */
/* asm 2: fe_sub(>X3=r->X,<A=r->Z,<B=r->Y); */
fe_sub(r->X,r->Z,r->Y);
/* qhasm: Y3 = A+B */
/* asm 1: fe_add(>Y3=fe#2,<A=fe#3,<B=fe#2); */
/* asm 2: fe_add(>Y3=r->Y,<A=r->Z,<B=r->Y); */
fe_add(r->Y,r->Z,r->Y);
/* qhasm: Z3 = D+C */
/* asm 1: fe_add(>Z3=fe#3,<D=fe#5,<C=fe#4); */
/* asm 2: fe_add(>Z3=r->Z,<D=t0,<C=r->T); */
fe_add(r->Z,t0,r->T);
/* qhasm: T3 = D-C */
/* asm 1: fe_sub(>T3=fe#4,<D=fe#5,<C=fe#4); */
/* asm 2: fe_sub(>T3=r->T,<D=t0,<C=r->T); */
fe_sub(r->T,t0,r->T);
/* qhasm: return */

View file

@ -0,0 +1,96 @@
#include "ge.h"
static void slide(signed char *r,const unsigned char *a)
{
int i;
int b;
int k;
for (i = 0;i < 256;++i)
r[i] = 1 & (a[i >> 3] >> (i & 7));
for (i = 0;i < 256;++i)
if (r[i]) {
for (b = 1;b <= 6 && i + b < 256;++b) {
if (r[i + b]) {
if (r[i] + (r[i + b] << b) <= 15) {
r[i] += r[i + b] << b; r[i + b] = 0;
} else if (r[i] - (r[i + b] << b) >= -15) {
r[i] -= r[i + b] << b;
for (k = i + b;k < 256;++k) {
if (!r[k]) {
r[k] = 1;
break;
}
r[k] = 0;
}
} else
break;
}
}
}
}
static ge_precomp Bi[8] = {
#include "base2.h"
} ;
/*
r = a * A + b * B
where a = a[0]+256*a[1]+...+256^31 a[31].
and b = b[0]+256*b[1]+...+256^31 b[31].
B is the Ed25519 base point (x,4/5) with x positive.
*/
void ge_double_scalarmult_vartime(ge_p2 *r,const unsigned char *a,const ge_p3 *A,const unsigned char *b)
{
signed char aslide[256];
signed char bslide[256];
ge_cached Ai[8]; /* A,3A,5A,7A,9A,11A,13A,15A */
ge_p1p1 t;
ge_p3 u;
ge_p3 A2;
int i;
slide(aslide,a);
slide(bslide,b);
ge_p3_to_cached(&Ai[0],A);
ge_p3_dbl(&t,A); ge_p1p1_to_p3(&A2,&t);
ge_add(&t,&A2,&Ai[0]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[1],&u);
ge_add(&t,&A2,&Ai[1]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[2],&u);
ge_add(&t,&A2,&Ai[2]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[3],&u);
ge_add(&t,&A2,&Ai[3]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[4],&u);
ge_add(&t,&A2,&Ai[4]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[5],&u);
ge_add(&t,&A2,&Ai[5]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[6],&u);
ge_add(&t,&A2,&Ai[6]); ge_p1p1_to_p3(&u,&t); ge_p3_to_cached(&Ai[7],&u);
ge_p2_0(r);
for (i = 255;i >= 0;--i) {
if (aslide[i] || bslide[i]) break;
}
for (;i >= 0;--i) {
ge_p2_dbl(&t,r);
if (aslide[i] > 0) {
ge_p1p1_to_p3(&u,&t);
ge_add(&t,&u,&Ai[aslide[i]/2]);
} else if (aslide[i] < 0) {
ge_p1p1_to_p3(&u,&t);
ge_sub(&t,&u,&Ai[(-aslide[i])/2]);
}
if (bslide[i] > 0) {
ge_p1p1_to_p3(&u,&t);
ge_madd(&t,&u,&Bi[bslide[i]/2]);
} else if (bslide[i] < 0) {
ge_p1p1_to_p3(&u,&t);
ge_msub(&t,&u,&Bi[(-bslide[i])/2]);
}
ge_p1p1_to_p2(r,&t);
}
}

View file

@ -0,0 +1,50 @@
#include "ge.h"
static const fe d = {
#include "d.h"
} ;
static const fe sqrtm1 = {
#include "sqrtm1.h"
} ;
int ge_frombytes_negate_vartime(ge_p3 *h,const unsigned char *s)
{
fe u;
fe v;
fe v3;
fe vxx;
fe check;
fe_frombytes(h->Y,s);
fe_1(h->Z);
fe_sq(u,h->Y);
fe_mul(v,u,d);
fe_sub(u,u,h->Z); /* u = y^2-1 */
fe_add(v,v,h->Z); /* v = dy^2+1 */
fe_sq(v3,v);
fe_mul(v3,v3,v); /* v3 = v^3 */
fe_sq(h->X,v3);
fe_mul(h->X,h->X,v);
fe_mul(h->X,h->X,u); /* x = uv^7 */
fe_pow22523(h->X,h->X); /* x = (uv^7)^((q-5)/8) */
fe_mul(h->X,h->X,v3);
fe_mul(h->X,h->X,u); /* x = uv^3(uv^7)^((q-5)/8) */
fe_sq(vxx,h->X);
fe_mul(vxx,vxx,v);
fe_sub(check,vxx,u); /* vx^2-u */
if (fe_isnonzero(check)) {
fe_add(check,vxx,u); /* vx^2+u */
if (fe_isnonzero(check)) return -1;
fe_mul(h->X,h->X,sqrtm1);
}
if (fe_isnegative(h->X) == (s[31] >> 7))
fe_neg(h->X,h->X);
fe_mul(h->T,h->X,h->Y);
return 0;
}

View file

@ -0,0 +1,11 @@
#include "ge.h"
/*
r = p + q
*/
void ge_madd(ge_p1p1 *r,const ge_p3 *p,const ge_precomp *q)
{
fe t0;
#include "ge_madd.h"
}

View file

@ -0,0 +1,88 @@
/* qhasm: enter ge_madd */
/* qhasm: fe X1 */
/* qhasm: fe Y1 */
/* qhasm: fe Z1 */
/* qhasm: fe T1 */
/* qhasm: fe ypx2 */
/* qhasm: fe ymx2 */
/* qhasm: fe xy2d2 */
/* qhasm: fe X3 */
/* qhasm: fe Y3 */
/* qhasm: fe Z3 */
/* qhasm: fe T3 */
/* qhasm: fe YpX1 */
/* qhasm: fe YmX1 */
/* qhasm: fe A */
/* qhasm: fe B */
/* qhasm: fe C */
/* qhasm: fe D */
/* qhasm: YpX1 = Y1+X1 */
/* asm 1: fe_add(>YpX1=fe#1,<Y1=fe#12,<X1=fe#11); */
/* asm 2: fe_add(>YpX1=r->X,<Y1=p->Y,<X1=p->X); */
fe_add(r->X,p->Y,p->X);
/* qhasm: YmX1 = Y1-X1 */
/* asm 1: fe_sub(>YmX1=fe#2,<Y1=fe#12,<X1=fe#11); */
/* asm 2: fe_sub(>YmX1=r->Y,<Y1=p->Y,<X1=p->X); */
fe_sub(r->Y,p->Y,p->X);
/* qhasm: A = YpX1*ypx2 */
/* asm 1: fe_mul(>A=fe#3,<YpX1=fe#1,<ypx2=fe#15); */
/* asm 2: fe_mul(>A=r->Z,<YpX1=r->X,<ypx2=q->yplusx); */
fe_mul(r->Z,r->X,q->yplusx);
/* qhasm: B = YmX1*ymx2 */
/* asm 1: fe_mul(>B=fe#2,<YmX1=fe#2,<ymx2=fe#16); */
/* asm 2: fe_mul(>B=r->Y,<YmX1=r->Y,<ymx2=q->yminusx); */
fe_mul(r->Y,r->Y,q->yminusx);
/* qhasm: C = xy2d2*T1 */
/* asm 1: fe_mul(>C=fe#4,<xy2d2=fe#17,<T1=fe#14); */
/* asm 2: fe_mul(>C=r->T,<xy2d2=q->xy2d,<T1=p->T); */
fe_mul(r->T,q->xy2d,p->T);
/* qhasm: D = 2*Z1 */
/* asm 1: fe_add(>D=fe#5,<Z1=fe#13,<Z1=fe#13); */
/* asm 2: fe_add(>D=t0,<Z1=p->Z,<Z1=p->Z); */
fe_add(t0,p->Z,p->Z);
/* qhasm: X3 = A-B */
/* asm 1: fe_sub(>X3=fe#1,<A=fe#3,<B=fe#2); */
/* asm 2: fe_sub(>X3=r->X,<A=r->Z,<B=r->Y); */
fe_sub(r->X,r->Z,r->Y);
/* qhasm: Y3 = A+B */
/* asm 1: fe_add(>Y3=fe#2,<A=fe#3,<B=fe#2); */
/* asm 2: fe_add(>Y3=r->Y,<A=r->Z,<B=r->Y); */
fe_add(r->Y,r->Z,r->Y);
/* qhasm: Z3 = D+C */
/* asm 1: fe_add(>Z3=fe#3,<D=fe#5,<C=fe#4); */
/* asm 2: fe_add(>Z3=r->Z,<D=t0,<C=r->T); */
fe_add(r->Z,t0,r->T);
/* qhasm: T3 = D-C */
/* asm 1: fe_sub(>T3=fe#4,<D=fe#5,<C=fe#4); */
/* asm 2: fe_sub(>T3=r->T,<D=t0,<C=r->T); */
fe_sub(r->T,t0,r->T);
/* qhasm: return */

View file

@ -0,0 +1,11 @@
#include "ge.h"
/*
r = p - q
*/
void ge_msub(ge_p1p1 *r,const ge_p3 *p,const ge_precomp *q)
{
fe t0;
#include "ge_msub.h"
}

View file

@ -0,0 +1,88 @@
/* qhasm: enter ge_msub */
/* qhasm: fe X1 */
/* qhasm: fe Y1 */
/* qhasm: fe Z1 */
/* qhasm: fe T1 */
/* qhasm: fe ypx2 */
/* qhasm: fe ymx2 */
/* qhasm: fe xy2d2 */
/* qhasm: fe X3 */
/* qhasm: fe Y3 */
/* qhasm: fe Z3 */
/* qhasm: fe T3 */
/* qhasm: fe YpX1 */
/* qhasm: fe YmX1 */
/* qhasm: fe A */
/* qhasm: fe B */
/* qhasm: fe C */
/* qhasm: fe D */
/* qhasm: YpX1 = Y1+X1 */
/* asm 1: fe_add(>YpX1=fe#1,<Y1=fe#12,<X1=fe#11); */
/* asm 2: fe_add(>YpX1=r->X,<Y1=p->Y,<X1=p->X); */
fe_add(r->X,p->Y,p->X);
/* qhasm: YmX1 = Y1-X1 */
/* asm 1: fe_sub(>YmX1=fe#2,<Y1=fe#12,<X1=fe#11); */
/* asm 2: fe_sub(>YmX1=r->Y,<Y1=p->Y,<X1=p->X); */
fe_sub(r->Y,p->Y,p->X);
/* qhasm: A = YpX1*ymx2 */
/* asm 1: fe_mul(>A=fe#3,<YpX1=fe#1,<ymx2=fe#16); */
/* asm 2: fe_mul(>A=r->Z,<YpX1=r->X,<ymx2=q->yminusx); */
fe_mul(r->Z,r->X,q->yminusx);
/* qhasm: B = YmX1*ypx2 */
/* asm 1: fe_mul(>B=fe#2,<YmX1=fe#2,<ypx2=fe#15); */
/* asm 2: fe_mul(>B=r->Y,<YmX1=r->Y,<ypx2=q->yplusx); */
fe_mul(r->Y,r->Y,q->yplusx);
/* qhasm: C = xy2d2*T1 */
/* asm 1: fe_mul(>C=fe#4,<xy2d2=fe#17,<T1=fe#14); */
/* asm 2: fe_mul(>C=r->T,<xy2d2=q->xy2d,<T1=p->T); */
fe_mul(r->T,q->xy2d,p->T);
/* qhasm: D = 2*Z1 */
/* asm 1: fe_add(>D=fe#5,<Z1=fe#13,<Z1=fe#13); */
/* asm 2: fe_add(>D=t0,<Z1=p->Z,<Z1=p->Z); */
fe_add(t0,p->Z,p->Z);
/* qhasm: X3 = A-B */
/* asm 1: fe_sub(>X3=fe#1,<A=fe#3,<B=fe#2); */
/* asm 2: fe_sub(>X3=r->X,<A=r->Z,<B=r->Y); */
fe_sub(r->X,r->Z,r->Y);
/* qhasm: Y3 = A+B */
/* asm 1: fe_add(>Y3=fe#2,<A=fe#3,<B=fe#2); */
/* asm 2: fe_add(>Y3=r->Y,<A=r->Z,<B=r->Y); */
fe_add(r->Y,r->Z,r->Y);
/* qhasm: Z3 = D-C */
/* asm 1: fe_sub(>Z3=fe#3,<D=fe#5,<C=fe#4); */
/* asm 2: fe_sub(>Z3=r->Z,<D=t0,<C=r->T); */
fe_sub(r->Z,t0,r->T);
/* qhasm: T3 = D+C */
/* asm 1: fe_add(>T3=fe#4,<D=fe#5,<C=fe#4); */
/* asm 2: fe_add(>T3=r->T,<D=t0,<C=r->T); */
fe_add(r->T,t0,r->T);
/* qhasm: return */

View file

@ -0,0 +1,12 @@
#include "ge.h"
/*
r = p
*/
extern void ge_p1p1_to_p2(ge_p2 *r,const ge_p1p1 *p)
{
fe_mul(r->X,p->X,p->T);
fe_mul(r->Y,p->Y,p->Z);
fe_mul(r->Z,p->Z,p->T);
}

View file

@ -0,0 +1,13 @@
#include "ge.h"
/*
r = p
*/
extern void ge_p1p1_to_p3(ge_p3 *r,const ge_p1p1 *p)
{
fe_mul(r->X,p->X,p->T);
fe_mul(r->Y,p->Y,p->Z);
fe_mul(r->Z,p->Z,p->T);
fe_mul(r->T,p->X,p->Y);
}

View file

@ -0,0 +1,8 @@
#include "ge.h"
void ge_p2_0(ge_p2 *h)
{
fe_0(h->X);
fe_1(h->Y);
fe_1(h->Z);
}

View file

@ -0,0 +1,11 @@
#include "ge.h"
/*
r = 2 * p
*/
void ge_p2_dbl(ge_p1p1 *r,const ge_p2 *p)
{
fe t0;
#include "ge_p2_dbl.h"
}

View file

@ -0,0 +1,73 @@
/* qhasm: enter ge_p2_dbl */
/* qhasm: fe X1 */
/* qhasm: fe Y1 */
/* qhasm: fe Z1 */
/* qhasm: fe A */
/* qhasm: fe AA */
/* qhasm: fe XX */
/* qhasm: fe YY */
/* qhasm: fe B */
/* qhasm: fe X3 */
/* qhasm: fe Y3 */
/* qhasm: fe Z3 */
/* qhasm: fe T3 */
/* qhasm: XX=X1^2 */
/* asm 1: fe_sq(>XX=fe#1,<X1=fe#11); */
/* asm 2: fe_sq(>XX=r->X,<X1=p->X); */
fe_sq(r->X,p->X);
/* qhasm: YY=Y1^2 */
/* asm 1: fe_sq(>YY=fe#3,<Y1=fe#12); */
/* asm 2: fe_sq(>YY=r->Z,<Y1=p->Y); */
fe_sq(r->Z,p->Y);
/* qhasm: B=2*Z1^2 */
/* asm 1: fe_sq2(>B=fe#4,<Z1=fe#13); */
/* asm 2: fe_sq2(>B=r->T,<Z1=p->Z); */
fe_sq2(r->T,p->Z);
/* qhasm: A=X1+Y1 */
/* asm 1: fe_add(>A=fe#2,<X1=fe#11,<Y1=fe#12); */
/* asm 2: fe_add(>A=r->Y,<X1=p->X,<Y1=p->Y); */
fe_add(r->Y,p->X,p->Y);
/* qhasm: AA=A^2 */
/* asm 1: fe_sq(>AA=fe#5,<A=fe#2); */
/* asm 2: fe_sq(>AA=t0,<A=r->Y); */
fe_sq(t0,r->Y);
/* qhasm: Y3=YY+XX */
/* asm 1: fe_add(>Y3=fe#2,<YY=fe#3,<XX=fe#1); */
/* asm 2: fe_add(>Y3=r->Y,<YY=r->Z,<XX=r->X); */
fe_add(r->Y,r->Z,r->X);
/* qhasm: Z3=YY-XX */
/* asm 1: fe_sub(>Z3=fe#3,<YY=fe#3,<XX=fe#1); */
/* asm 2: fe_sub(>Z3=r->Z,<YY=r->Z,<XX=r->X); */
fe_sub(r->Z,r->Z,r->X);
/* qhasm: X3=AA-Y3 */
/* asm 1: fe_sub(>X3=fe#1,<AA=fe#5,<Y3=fe#2); */
/* asm 2: fe_sub(>X3=r->X,<AA=t0,<Y3=r->Y); */
fe_sub(r->X,t0,r->Y);
/* qhasm: T3=B-Z3 */
/* asm 1: fe_sub(>T3=fe#4,<B=fe#4,<Z3=fe#3); */
/* asm 2: fe_sub(>T3=r->T,<B=r->T,<Z3=r->Z); */
fe_sub(r->T,r->T,r->Z);
/* qhasm: return */

View file

@ -0,0 +1,9 @@
#include "ge.h"
void ge_p3_0(ge_p3 *h)
{
fe_0(h->X);
fe_1(h->Y);
fe_1(h->Z);
fe_0(h->T);
}

View file

@ -0,0 +1,12 @@
#include "ge.h"
/*
r = 2 * p
*/
void ge_p3_dbl(ge_p1p1 *r,const ge_p3 *p)
{
ge_p2 q;
ge_p3_to_p2(&q,p);
ge_p2_dbl(r,&q);
}

View file

@ -0,0 +1,17 @@
#include "ge.h"
/*
r = p
*/
static const fe d2 = {
#include "d2.h"
} ;
extern void ge_p3_to_cached(ge_cached *r,const ge_p3 *p)
{
fe_add(r->YplusX,p->Y,p->X);
fe_sub(r->YminusX,p->Y,p->X);
fe_copy(r->Z,p->Z);
fe_mul(r->T2d,p->T,d2);
}

View file

@ -0,0 +1,12 @@
#include "ge.h"
/*
r = p
*/
extern void ge_p3_to_p2(ge_p2 *r,const ge_p3 *p)
{
fe_copy(r->X,p->X);
fe_copy(r->Y,p->Y);
fe_copy(r->Z,p->Z);
}

View file

@ -0,0 +1,14 @@
#include "ge.h"
void ge_p3_tobytes(unsigned char *s,const ge_p3 *h)
{
fe recip;
fe x;
fe y;
fe_invert(recip,h->Z);
fe_mul(x,h->X,recip);
fe_mul(y,h->Y,recip);
fe_tobytes(s,y);
s[31] ^= fe_isnegative(x) << 7;
}

View file

@ -0,0 +1,8 @@
#include "ge.h"
void ge_precomp_0(ge_precomp *h)
{
fe_1(h->yplusx);
fe_1(h->yminusx);
fe_0(h->xy2d);
}

Some files were not shown because too many files have changed in this diff Show more